
Sparx Systems UML Tutorials The Use Case Model 

© Sparx Systems 2004 Page 1/5 

 
 
 
 
 

 
 

UML TUTORIALS 
 
 
 
 

THE USE CASE MODEL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

www.sparxsystems.com.au 

www.sparxsystems.com.au


Sparx Systems UML Tutorials The Use Case Model 

© Sparx Systems 2004 Page 2/5 

The Use Case Model 

The Use Case Model describes the proposed functionality of the new system. A Use Case represents a discrete unit 
of interaction between a user (human or machine) and the system. A Use Case is a single unit of meaningful work; 
for example login to system, register with system and create order are all Use Cases. Each Use Case has a 
description which describes the functionality that will be built in the proposed system. A Use Case may 'include' 
another Use Case's functionality or 'extend' another Use Case with its own behaviour.  

Use Cases are typically related to 'actors'. An actor is a human or machine entity that interacts with the system to 
perform meaningful work.  

 

A Use Case description will generally include: 

1.  General comments and notes describing the use case;  
2. Requirements - Things that the use case must allow the user to do, such as <ability to update order>, <ability 

to modify order> & etc.  
3. Constraints- Rules about what can and can't be done. Includes i) pre-conditions that must be true before the use 

case is run -e.g. <create order> must precede <modify order>; ii) post-conditions that must be true once the 
use case is run e.g. <order is modified and consistent>; iii) invariants: these are always true - e.g. an order 
must always have a customer number  

4. Scenarios - Sequential descriptions of the steps taken to carry out the use case. May include multiple scenarios, 
to cater for exceptional circumstances and alternate processing paths;  

5. Scenario diagrams -Sequence diagrams to depict the workflow - similar to (4) but graphically portrayed. 
6. Additional attributes such as implementation phase, version number, complexity rating, stereotype and status 

Actors 
An Actor is a user of the system. This includes both human users and other computer systems. An Actor uses a Use 
Case to perform some piece of work which is of value to the business. The set of Use Cases an actor has access to 
defines their overall role in the system and the scope of their action. 

 



Sparx Systems UML Tutorials The Use Case Model 

© Sparx Systems 2004 Page 3/5 

Constraints, Requirements and Scenarios 

The formal specification of a Use Case includes: 

1.  Requirements. These are the formal functional requirements that a Use Case must provide to the end user. They 
correspond to the functional specifications found in structured methodologies. A requirement is a contract that 
the Use Case will perform some action or provide some value to the system.  

2. Constraints. These are the formal rules and limitations that a Use Case operates under, and includes pre- post- 
and invariant conditions. A pre-condition specifies what must have already occurred or be in place before the 
Use Case may start. A post-condition documents what will be true once the Use Case is complete. An invariant 
specifies what will be true throughout the time the Use Case operates.  

3. Scenarios. Scenarios are formal descriptions of the flow of events that occurs during a Use Case instance. These 
are usually described in text and correspond to a textual representation of the Sequence Diagram.  

Includes and Extends relationships between Use Cases 
One Use Case may include the functionality of another as part of its normal processing. Generally, it is assumed that 
the included Use Case will be called every time the basic path is run. An example may be to list a set of customer 
orders to choose from before modifying a selected order - in this case the <list orders> Use Case may be included 
every time the <modify order> Use Case is run. 

A Use Case may be included by one or more Use Cases, so it helps to reduce duplication of functionality by factoring 
out common behaviour into Use Cases that are re-used many times.  
One Use Case may extend the behaviour of another - typically when exceptional circumstances are encountered. For 
example, if before modifying a particular type of customer order, a user must get approval from some higher 
authority, then the <get approval> Use Case may optionally extend the regular <modify order> Use Case. 



Sparx Systems UML Tutorials The Use Case Model 

© Sparx Systems 2004 Page 4/5 

Sequence Diagrams 
UML provides a graphical means of depicting object interactions over time in Sequence Diagrams. These typically 
show a user or actor, and the objects and components they interact with in the execution of a use case. One 
sequence diagram typically represents a single Use Case 'scenario' or flow of events.  
Sequence diagrams are an excellent way to document usage scenarios and to both capture required objects early in 
analysis and to verify object usage later in design. Sequence diagrams show the flow of messages from one object 
to another, and as such correspond to the methods and events supported by a class/object.  
The diagram illustrated below shows an example of a sequence diagram, with the user or actor on the left initiating 
a flow of events and messages that correspond to the Use Case scenario. The messages that pass between objects 
will become class operations in the final model. 

 



Sparx Systems UML Tutorials The Use Case Model 

© Sparx Systems 2004 Page 5/5 

Implementation Diagram 
A Use Case is a formal description of functionality the system will have when constructed. An implementation 
diagram is typically associated with a Use Case to document what design elements (eg. components and classes) 
will implement the Use Case functionality in the new system. This provides a high level of traceability for the system 
designer, the customer and the team that will actually build the system. The list of Use Cases that a component or 
class is linked to documents the minimum functionality that must be implemented by the component.  

 

The example above shows that the Use Case "Login" implements the formal requirement "1.01 Log on to the 
website". It also states that the Business Logic component and ASP Pages component implement some or all of the 
Login functionality. A further refinement is to show the Login screen (a web page) as implementing the Login 
interface. These implementation or realisation links define the traceability from the formal requirements, through 
Use Cases on to Components and Screens. 


