
Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 1

UML Tutorials

Using UML

Part One –

Structural

Modeling

Diagrams

by Sparx Systems

All material © Sparx Systems 2007

http://www.sparxsystems.com

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 2

Trademarks

Object Management Group, OMG, Unified Modeling Language, UML, are registered trademarks or

trademarks of the Object Management Group, Inc.

All other product and / or company names mentioned within this document are used for identification

purposes only, and may be trademarks or registered trademarks of their respective owners.

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 3

Table of Contents

INTRODUCTION ..4

PACKAGE DIAGRAMS...5

Package Merge ..6
Package Import..6
Nesting Connectors..6

CLASS DIAGRAMS..7

Classes ...7
Class notations...8
Interfaces ...8
Tables...9
Associations ... 10
Generalizations.. 10
Aggregations.. 11
Association Classes ... 11
Dependencies ... 12
Traces .. 12
Realizations ... 12
Nestings ... 13

OBJECT DIAGRAMS... 14

Class and Object Elements .. 14
Run Time State... 14
Example Class and Object Diagrams .. 14

COMPOSITE STRUCTURE .. 16

Part .. 16
Port .. 16
Interfaces ... 17
Delegate... 18
Collaboration... 18
Role Binding .. 19
Represents.. 19
Occurrence .. 19

COMPONENT DIAGRAMS... 21

Representing Components ... 21
Assembly Connector .. 22
Components with Ports.. 22

DEPLOYMENT DIAGRAMS .. 23

Node... 23
Node Instance .. 23
Node Stereotypes ... 23
Artifact ... 23
Association... 24
Node as Container ... 24

RECOMMENDED READING ... 26

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 4

Introduction
The Unified Modeling Language (UML) has become the de-facto standard for building

Object-Oriented software. UML 2.1 builds on the already highly successful UML 2.0

standard, which has become an industry standard for modeling, design and construction

of software systems as well as more generalized business and scientific processes.

UML 2.1 defines thirteen basic diagram types, divided into two general sets: structural

modeling diagrams and behavioral modeling diagrams. Part one will deal with

structural modeling diagrams.

The Object Management Group (OMG) specification states:

“The Unified Modeling Language (UML) is a graphical language for

visualizing, specifying, constructing, and documenting the artifacts of a

software-intensive system. The UML offers a standard way to write a system’s

blueprints, including conceptual things such as business processes and system

functions as well as concrete things such as programming language statements,

database schemas, and reusable software components.”

The important point to note here is UML is a “language” for specifying and not a

method or procedure. The UML is used to define a software system – to detail the

artifacts in the systems, to document and construct; it is the language the blueprint is

written in. The UML may be used in a variety of ways to support a software

development methodology (such as the Rational Unified Process), but in itself does not

specify that methodology or process.

Structure diagrams define the static architecture of a model. They are used to model

the “things” that make up a model – the classes, objects, interfaces and physical

components. In addition they are used to model the relationships and dependencies

between elements.

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 5

Package Diagrams
Package Diagrams are used to reflect the organization of packages and their elements.

When used to represent class elements, package diagrams are used to provide a

visualization of the namespaces. The most common use for package diagrams is to

organize use case diagrams and class diagrams, although the use of package diagrams

is not limited to these UML elements.

The following is an example of a package diagram.

Elements contained in a package share the same namespace, this sharing of namespace

requires the elements contained in a specific namespace to have unique names.

Packages can be built to represent either physical or logical relationships. When

choosing to include classes to specific packages, it is useful to assign the classes with

the same inheritance hierarchy to packages, classes that are related via composition and

classes that collaborate with also have a strong argument for being included in the same

package.

Packages are represented in UML 2.1 as folders and contain the elements that share a

namespace; all elements within a package must be identifiable, and so have a unique

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 6

name or type. The package must show the package name and can optionally show the

elements within the package in extra compartments.

Package Merge

A «merge» connector between two packages defines an implicit generalization between

elements in the source package, and elements with the same name in the target

package. The source elements’ definitions will be expanded to include the element

definitions contained in the target. The target elements’ definitions will be unaffected,

as will the definitions of source code elements that don’t match names with any

element in the target package.

Package Import

The «import» connector indicates that the elements within the target package, which in

this example is a single class, the target package, will use unqualified names when

being referred to from the source package. The source package’s namespace will gain

access to the target’s class(s); the target’s namespace is not affected.

Nesting Connectors

The nesting connector between the target package and source packages shows that the

source package is fully contained in the target package.

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 7

Class Diagrams
The Class diagram shows the building blocks of any object-orientated system. Class

diagrams depict a static view of the model, or part of the model, describing what

attributes and behavior it has rather than detailing the methods for achieving

operations. Class diagrams are most useful in illustrating relationships between classes

and interfaces. Generalizations, aggregations, and associations are all valuable in

reflecting inheritance, composition or usage, and connections respectively.

The diagram below illustrates aggregation relationships between classes. The lighter

aggregation indicates that the class Account uses AddressBook, but does not

necessarily contain an instance of it. The strong, composite aggregations by the other

connectors indicate ownership or containment of the source classes by the target

classes, for example Contact and ContactGroup values will be contained in

AddressBook.

Classes

A class is an element that defines the attributes and behaviors that an object is able to

generate. The behavior is described by the possible messages the class is able to

understand, along with operations that are appropriate for each message. Classes may

also have definitions of constraints tagged values and stereotypes.

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 8

Class notations

Classes are represented by rectangles which show the name of the class and optionally

the name of the operations and attributes. Compartments are used to divide the class

name, attributes and operations.

In the diagram below the class contains the class name in the topmost compartment, the

next compartment details the attributes, with the "center" attribute showing initial

values. The final compartment shows the operations the setWidth, setLength and

setPosition operations showing their parameters. The notation that precedes the

attribute, or operation name, indicates the visibility of the element: if the + symbol is

used, the attribute, or operation, has a public level of visibility; if a - symbol is used,

the attribute, or operation, is private. In addition the # symbol allows an operation, or

attribute, to be defined as protected, while the ~ symbol indicates package visibility.

Interfaces

An interface is a specification of behavior that implementers agree to meet; it is a

contract. By realizing an interface, classes are guaranteed to support a required

behavior, which allows the system to treat non-related elements in the same way – i.e.

through the common interface.

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 9

Interfaces may be drawn in a similar style to a class, with operations specified, as

shown below. They may also be drawn as a circle with no explicit operations detailed.

When drawn as a circle, realization links to the circle form of notation are drawn

without target arrows.

Tables

Although not a part of the base UML, a table is an example of what can be done with

stereotypes. It is drawn with a small table icon in the upper right corner. Table

attributes are stereotyped «column». Most tables will have a primary key, being one or

more fields that form a unique combination used to access the table, plus a primary key

operation which is stereotyped «PK». Some tables will have one or more foreign keys,

being one or more fields that together map onto a primary key in a related table, plus a

foreign key operation which is stereotyped «FK».

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 10

Associations

An association implies two model elements have a relationship - usually implemented

as an instance variable in one class. This connector may include named roles at each

end, cardinality, direction and constraints. Association is the general relationship type

between elements. For more than two elements, a diamond representation toolbox

element can be used as well. When code is generated for class diagrams, named

association ends become instance variables in the target class. So, for the example

below, “playsFor” will become an instance variable in the “Player” class.

Generalizations

A generalization is used to indicate inheritance. Drawn from the specific classifier to a

general classifier, the generalize implication is that the source inherits the target's

characteristics. The following diagram shows a parent class generalizing a child class.

Implicitly, an instantiated object of the Circle class will have attributes x_position,

y_position and radius and a method display(). Note that the class Shape is abstract,

shown by the name being italicized.

The following diagram shows an equivalent view of the same information.

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 11

Aggregations

Aggregations are used to depict elements which are made up of smaller components.

Aggregation relationships are shown by a white diamond-shaped arrowhead pointing

towards the target or parent class.

A stronger form of aggregation - a composite aggregation - is shown by a black

diamond-shaped arrowhead and is used where components can be included in a

maximum of one composition at a time. If the parent of a composite aggregation is

deleted, usually all of its parts are deleted with it; however a part can be individually

removed from a composition without having to delete the entire composition.

Compositions are transitive, asymmetric relationships and can be recursive.

The following diagram illustrates the difference between weak and strong aggregations.

An address book is made up of a multiplicity of contacts and contact groups. A contact

group is a virtual grouping of contacts; a contact may be included in more than one

contact group. If you delete an address book, all the contacts and contact groups will be

deleted too; if you delete a contact group, no contacts will be deleted.

Association Classes

An association class is a construct that allows an association connection to have

operations and attributes. The following example shows that there is more to allocating

an employee to a project than making a simple association link between the two

classes: the role that the employee takes up on the project is a complex entity in its own

right and contains detail that does not belong in the employee or project class. For

example, an employee may be working on several projects at the same time and have

different job titles and security levels on each.

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 12

Dependencies

A dependency is used to model a wide range of dependent relationships between model

elements. It would normally be used early in the design process where it is known that

there is some kind of link between two elements but it is too early to know exactly

what the relationship is. Later in the design process, dependencies will be stereotyped

(stereotypes available include «instantiate», «trace», «import» and others) or replaced

with a more specific type of connector.

Traces

The trace relationship is a specialization of a dependency, linking model elements or

sets of elements that represent the same idea across models. Traces are often used to

track requirements and model changes. As changes can occur in both directions, the

order of this dependency is usually ignored. The relationship's properties can specify

the trace mapping, but the trace is usually bi-directional, informal and rarely

computable.

Realizations

The source object implements or realizes the destination. Realizations are used to

express traceability and completeness in the model - a business process or requirement

is realized by one or more use cases, which are in turn realized by some classes, which

in turn are realized by a component, etc. Mapping requirements, classes, etc. across the

design of your system, up through the levels of modeling abstraction, ensures the big

picture of your system remembers and reflects all the little pictures and details that

constrain and define it. A realization is shown as a dashed line with a solid arrowhead.

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 13

Nestings

A nesting is connector that shows that the source element is nested within the target

element. The following diagram shows the definition of an inner class, although in EA

it is more usual to show them by their position in the Project View hierarchy.

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 14

Object Diagrams

An object diagram may be considered a special case of a class diagram. Object

diagrams use a subset of the elements of a class diagram in order to emphasize the

relationship between instances of classes at some point in time. They are useful in

understanding class diagrams. They don’t show anything architecturally different to

class diagrams, but reflect multiplicity and roles.

Class and Object Elements

The following diagram shows the differences in appearance between a class element

and an object element. Note that the class element consists of three parts, being

divided into name, attribute and operation compartments; by default, object elements

don’t have compartments. The display of names is also different: object names are

underlined and may show the name of the classifier from which the object is

instantiated.

Run Time State

A classifier element can have any number of attributes and operations. These aren’t

shown in an object instance. It is possible, however, to define an object’s run time

state, showing the set values of attributes in the particular instance.

Example Class and Object Diagrams

The following diagram shows an object diagram with its defining class diagram inset,

and it illustrates the way in which an object diagram may be used to test the

multiplicities of assignments in class diagrams. The car class has a 1-to-many

multiplicity to the wheel class, but if a 1-to-4 multiplicity had been chosen instead,

that wouldn’t have allowed for the three-wheeled car shown in the object diagram.

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 15

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 16

Composite Structure

A composite structure diagram is a diagram that shows the internal structure of a

classifier, including its interaction points to other parts of the system. It shows the

configuration and relationship of parts that together perform the behavior of the

containing classifier.

Class elements have been described in great detail in the section in class diagrams.

This section describes the way that classes can be displayed as composite elements

exposing interfaces and containing ports and parts.

Part

A part is an element that represents a set of one or more instances which are owned

by a containing classifier instance. So, for example, if a diagram instance owned a set

of graphical elements, then the graphical elements could be represented as parts, if it

were useful to do so to model some kind of relationship between them. Note that a

part can be removed from its parent before the parent is deleted, so that the part isn’t

deleted at the same time.

A part is shown as an unadorned rectangle contained within the body of a class or

component element.

Port

A port is a typed element that represents an externally visible part of a containing

classifier instance. Ports define the interaction between a classifier and its

environment. A port can appear on the boundary of a contained part, a class or a

composite structure. A port may specify the services a classifier provides, as well as

the services that it requires of its environment.

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 17

A port is shown as a named rectangle on the boundary edge of its owning classifier.

Interfaces

An interface is similar to a class but with a number of restrictions. All interface

operations are public and abstract, and do not provide any default implementation.

All interface attributes must be constraints. However, while a class may only inherit

from a single super-class, it may implement multiple interfaces.

An interface, when standing alone in a diagram, is either shown as a class element

rectangle with the «interface» keyword and with its name italicized to denote it is

abstract, or it is shown as a circle.

Note that the circle notation does not show the interface operations. When interfaces

are shown as being owned by classes, they are referred to as exposed interfaces. An

exposed interface can be defined as either provided or required. A provided interface

is an affirmation that the containing classifier supplies the operations defined by the

named interface element and is defined by drawing a realization link between the

class and the interface. A required interface is a statement that the classifier is able to

communicate with some other classifier which provides operations defined by the

named interface element and is defined by drawing a dependency link between the

class and the interface.

A provided interface is shown as a "ball on a stick" attached to the edge of a classifier

element. A required interface is shown as a "cup on a stick" attached to the edge of a

classifier element.

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 18

Delegate

A delegate connector is used for defining the internal workings of a component's

external ports and interfaces. A delegate connector is shown as an arrow with a

«delegate» keyword. It connects an external contract of a component as shown by its

ports to the internal realization of the behavior of the component's part.

Collaboration

A collaboration defines a set of co-operating roles used collectively to illustrate a

specific functionality. A collaboration should only show the roles and attributes

required to accomplish its defined task or function. Isolating the primary roles is an

exercise in simplifying the structure and clarifying the behavior, and also provides for

re-use. A collaboration often implements a pattern.

A collaboration element is shown as an ellipse.

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 19

Role Binding

A role binding connector is drawn from a collaboration to the classifier that fulfils the

role. It is shown as a dashed line with the name of the role at the classifier end.

Represents

A represents connector may be drawn from a collaboration to a classifier to show that

a collaboration is used in the classifier. It is shown as a dashed line with arrowhead

and the keyword «represents».

Occurrence

An occurrence connector may be drawn from a collaboration to a classifier to show

that a collaboration represents (sic) the classifier. It is shown as a dashed line with

arrowhead and the keyword «occurrence».

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 20

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 21

Component Diagrams
Component diagrams illustrate the pieces of software, embedded controllers, etc., that

will make up a system. A component diagram has a higher level of abstraction than a

class diagram – usually a component is implemented by one or more classes (or

objects) at runtime. They are the building blocks so a component can eventually

encompass a large portion of a system.

The diagram above demonstrates some components and their inter-relationships.

Assembly connectors “link” the provided interfaces supplied by ‘Product’ and

‘Customer’ to the required interfaces specified by ‘Order’. A dependency relationship

maps a customer's associated account details to the required interface; ‘Payment’,

indicated by ‘Order’.

Components are similar in practice to package diagrams, as they define boundaries

and are used to group elements into logical structures. The difference between

package diagrams and component diagrams is component diagrams offer a more

semantically rich grouping mechanism. With component diagrams all the model

elements are private, whereas package diagrams only display public items.

Representing Components

Components are represented as a rectangular classifier with the keyword

«component»; optionally the component may be displayed as a rectangle with a

component icon in the right-hand upper corner.

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 22

Assembly Connector

The assembly connector bridges a component’s required interface (Component1) with

the provided interface of another component (Component2); this allows one

component to provide the services that another component requires.

Components with Ports

Using ports with component diagrams allows for a service or behavior to be specified

to its environment, as well as a service or behavior that a component requires. Ports

may specify inputs and outputs, as they can operate bi-directionally. The following

diagram details a component with a port for online services along with two provided

interfaces order entry and tracking as well as a required interface payment.

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 23

Deployment Diagrams
A deployment diagram models the run-time architecture of a system. It shows the

configuration of the hardware elements (nodes) and shows how software elements

and artifacts are mapped onto those nodes.

Node

A node is either a hardware or software element. It is shown as a three-dimensional

box shape, as shown below.

Node Instance

A node instance can be shown on a diagram. An instance can be distinguished from a

node by the fact that its name is underlined and has a colon before its base node type.

An instance may or may not have a name before the colon. The following diagram

shows a named instance of a computer.

Node Stereotypes

A number of standard stereotypes are provided for nodes, namely «cdrom», «cd-

rom», «computer», «disk array», «pc», «pc client», «pc server», «secure», «server»,

«storage», «unix server», «user pc». These will display an appropriate icon in the top

right corner of the node symbol.

Artifact

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 24

An artifact is a product of the software development process. That may include

process models (e.g. use case models, design models, etc), source files, executables,

design documents, test reports, prototypes, user manuals, etc.

An artifact is denoted by a rectangle showing the artifact name, the «artifact»

keyword and a document icon, as shown below.

Association

In the context of a deployment diagram, an association represents a communication

path between nodes. The following diagram shows a deployment diagram for a

network, depicting network protocols as stereotypes, and multiplicities at the

association ends.

Node as Container

A node can contain other elements, such as components or artifacts. The following

diagram shows a deployment diagram for part of an embedded system, depicting an

executable artifact as being contained by the motherboard node.

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 25

Enterprise Architect Series:

Using UML – Structural Modeling Diagrams UML 2 Case Tool by Sparx Systems
http://www.sparxsystems.com

© Sparx Systems 2007 Page 26

Recommended Reading

For more information, please refer to:

Sparx Systems’ Web Site: www.sparxsystems.com

 Object Management Group’s Web Site: www.omg.com

 Object Management Group’s UML pages: www.uml.org

