
Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 1

Using EA

Test Management
in Enterprise

Architect

by Dermot O’Bryan
All material © Sparx Systems 2008 (version 1.1)

http://www.sparxsystems.com

http://www.sparxsystems.com/
http://www.sparxsystems.com/

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 2

Table of Contents
INTRODUCTION ...3

TEST TOOLS..3

TEST CASE DEFINITIONS:...3
Element Test cases..3
Test Case Elements ...6

BUILD, RUN, DEBUG & UNIT TESTING...8
MDA Transform NUnit or JUnit test Classes ...8
Tracing Compiler errors to the Modeling environment..9
xUnit Test Results Recorded in Test Cases...9
Testing & Visualization – using Debug Workbench ...10
Sequence Diagrams of Code Execution..11

TEST PLANS – ATTACHING TEST DOCUMENTS ..11

MANAGING TEST CASES IN THE MODELING ENVIRONMENT ...15

White-Box Testing: Implementation Elements Define the Tests ...15
Black-Box Testing: Using Maintenance Elements to Establish Traceability....................................16
Organizing Testing by Release ...17
Color Coding Elements Based on Test Status...20
Using Profiles to Add User-defined Testing Fields ..20

VIEWING AND REPORTING ...22
Built-in Test Reports ...22
RTF Test Reports ..24
Search Reports..25
HTML reports ...27

APPENDIX ..29

Import from Scenario, Constraints, Requirements and Other Tests ...29
DEFINING ELEMENT ATTRIBUTES USING A PROFILE..31

Defining Tagged Values ...32
Defining Additional Attributes Using a Profile ..33

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 3

Introduction
There are many benefits to managing tests within the modeling environment. This
whitepaper describes how to use Enterprise Architect to create Test Definitions and how
to relate these definitions to other artifacts within the development process.

The general topics covered in this paper are as follows:

 The first section Test Tools covers the core functionality including:

o Creating and viewing tests along with importing internal repository data
into Test Cases.

o Using Enterprise Architect’s Build, Test, Run and Debug facilities for
defining and executing tests during implementation.

o Creating, storing and linking test plans and documentation.

 The second section Managing Tests in the Modeling Environment covers
methods for using the Test tools in different configurations. These include:

o Setting different layouts for storing test data

o Connecting elements for traceability between Test Cases to
implementation

o Reporting Test Case information

o Searching on Test Results

o Using profiles for adding custom attributes to elements

Test Tools
Enterprise Architect supports three core functions related to testing. These can be combined and
used in a variety of ways. These features are:

 Test case definitions using either:
• Test Cases under any Element see: Element Test Cases.
• A specific Element Type, see: Test Case Element.

 Build, Run, Debug and Unit Testing. This covers building xUnit tests using MDA
transforms, generating tests results from these, as well as generating sequence
diagrams when running the code.

 Test Plans - Attaching Test Documents This outlines the documentation and reporting

of Test Plans using Linked documents and Document Artifact Elements.

Test Case Definitions:

Element Test cases
Multiple Test Cases can be assigned to any Element (from Requirements through
Classes, to Nodes and Components).

Element Test Cases are defined using the Test Cases window, available from the menu:
View | Testing (Alt+ 3), shown in Figure 1.

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 4

Figure 1 - Test Case Window with Edit Pane.

This window can be viewed in two modes:
a) Show properties mode:

The fields are immediately editable in the right pane.
b) Hide Properties mode:

Provides a summary view of test cases. Editing is performed in an external
window.

 To swap between these modes use the Show/Hide Properties button:

Test Case Fields
The Test Cases window allows for any number of test cases to be defined and grouped
under: Unit, Integration, System, Acceptance and Scenario tests. These groupings are
selected using the tab along the base of the Test Case window (see Figure 1 above).
The Test Cases window has two panes. On the left is a short listing of test cases and on the
right are fields for entering and editing data.

The following table contains descriptions of the fields in the editable section of the test
cases window:

Control Description Defined by
 Test The name of the test.

Status The current status of test (passed, failed...).
Type The type of test. user definable *
Run By Test run by (person). user definable **
Checked By Test run checked by (person). user definable **
Last Run The date test last run.
Description A description of the test.
Input Definition of the data to be input.
Acceptance Criteria Definition of the acceptance conditions.
Results A listing of the results of last test.
Defined Tests List of defined tests associated with this

element.

* Entries for the Type field are user definable from the menu: Settings | Maintenance | Testing
** Entries for Run By and Checked By are user definable, see: Settings | People | Resources

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 5

Setting a Diagram to Show Test Scripts
All diagrams have an option to show test cases defined within the elements. To display
a listing of the test definitions in a diagram’s elements, use any of the following:

 Select F5 | Elements | Show Compartments

 From the main menu select: Diagram | Properties | Elements | Show
Compartments

 Right-click on the diagram and from the context menu select: Properties |
Elements | Show Compartments

It is common for tests to be defined against a set of classes. However the tests are best
displayed within a diagram specific to testing. This diagram can be located away from
the package containing the main diagram (displaying the Attributes and Operations).

Figure 2, below is an example of the Class diagram with Attributes and Operations
showing. Figure 3 is an example of a test diagram set to show the Test cases for these
same elements.

Figure 2 is an example of
a standard Class diagram
with Attributes and
Operations showing.

Figure 2 - Original Class Diagram

Figure 3: is an example
of a diagram containing
the same Classes as are
in the diagram above, but
with the diagram
properties set as:
- []Tests
- [] Attributes and

Operations

Figure 3 - A Diagram with Test View set and Atttributes and Operation unset.

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 6

In-diagram editing of Tests

With Test Cases viewable in a diagram, any Test Case can be selected for editing. This
is done by:

1. Selecting the Test item using the mouse
2. Double-clicking on the item selected.

The details of the test case can then be directly accessed. If the Test Case window is not
currently open, it will to open the details of the selected test item. In Figure 4 below, the
Test Case selected in the Element is highlighted and opened in the Test Case window:

Figure 4 - Test case selection in an Element.

Import from Scenario, Constraints, Requirements and Other Tests
The test cases window also supports importing data from other elements. This includes
importing from Scenarios, Constraints, Internal Requirements and Test Cases.

For more detailed information on using this see the appendix: Import from Scenario,
Constraints, Requirements and Other Tests

Test Case Elements
Enterprise Architect supports a custom element-type called “Test Case”. This is
accessible from the Toolbox under Custom. Below is an example Test Case Element:

The Test Case element is useful:
 When a test case needs to be viewed in a diagram alongside other Elements
 For defining tests that are common to multiple elements
 For containing testing policy or procedures defined in an attached document

These test elements are related to other UML elements using standard UML connectors.
A good example is a Package containing Classes defined for two different platforms, but
with both sharing a single outline for testing:

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 7

In this example, Code Testing
is applicable to both packages.
Therefore, related test cases
are defined under one Test
Case element and reused. This
approach avoids duplication
and ensures consistency
should test case definitions
change.

Figure 5 - Test Case Element

In the above case, the general testing process is defined in one document and applied to
both platforms. This can be included in the model in the form of a Linked Document in
the Test Case Element, or an Element of type Document Artifact. For details on
including a linked Document with Testing Procedures see “Linked Documents and
Document Artifacts” below.

 Note: Test Case elements may contain internal tests viewable via the Testing
window (Alt-3).

To view tests on a diagram for non-rectangular element shapes, such as Test Case
elements, first set rectangle notation: right-click on the element and select from the
context menu: Advanced | Use Rectangle Notation. Then follow the procedure
described under: Setting a Diagram to Show Test Scripts.

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 8

Build, Run, Debug & Unit Testing
Enterprise Architect can interface with the Build, Run and Debug facilities of the major third
party development platforms. This feature includes the ability to:

 Build Tests: Use MDA Transforms for creating NUnit & JUnit class stubs.
 Record Unit Test results against the Unit Test classes.
 Immediate build, test and run from EA: Set up package Build Scripts for Builds, Unit

Tests, Running and Debugging.
 Testing & Visualization: Using EA’s debug workbench facilities
 Profiling and visualization: Generating Sequence diagrams from run-time debugging.

The Build Script feature maintains the runtime components of a package. Here you configure
how a package is built (compiled), assign any debugger, configure tests and detail how the
package should be deployed.

The Build, Test & Run options are defined in the main menu option: Project | Build and Run:

Figure 6 - Project - Build and Run Submenu

The Build Scripts, Builds, Test & Run entries in this menu are also directly available in the
Debug Workbench space. When interacting with the code this can give a more rapid access to
update this data. For general information on this, search on the help-index for: “Debug and
Profile”

The following is a brief description (and Help-references) of the testing features associated
with Build, Test & Run.

MDA Transform NUnit or JUnit test Classes
Where NUnit or JUnit is used for testing code, the Unit Test Classes can be created
manually or using MDA transforms to automate test case generation as part of a repeatable
process.

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 9

For a simple generation of class structures using an MDA transform of the existing Class
structure; select Project | Transformations | Transform Current Package:

Figure 7 - MDA Generation of NUnit Testing

For more information on using MDA transforms, from the help-index; search for the
following topics: “Built-in Transformations” “NUnit” “JUnit” and “Unit Testing”

Tracing Compiler errors to the Modeling environment
Using Enterprise Architect to initiate the compilation process allows for capturing compiler
warnings and errors in the Output view (Ctr-Shift+F8). These results can be copied from
the Output view for further processing. See the help index on: “Build Commands”, for
further information.

xUnit Test Results Recorded in Test Cases
After inputting code for testing in the xUnit operations then running the compiled xUnit
class, Test Cases for each of the operations are added to the Class Element. These record
the timing and status of these test operations. They are viewable in the Test Case Window
or in a diagram with the diagram-properties set to: [] Show Tests;

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 10

Figure 8: On execution
of xUnit tests in EA,
the test results are
automatically used to
generate test cases in
the Unit classes.

This image shows a
diagram with the
Diagram-Properties set
to show Test Cases.
These test cases are
also shown below, via
the Testing Window.

Figure 8 - Test Cases Generated by xUnit Tests

For more information, see the Enterprise Architect Help Index: “Unit Testing”

Testing & Visualization – using Debug Workbench
Using the Enterprise Architect Debug Workbench, you can walk through the execution of
code to verify a system’s behavior for a given test scenario.

Figure 9 - Source Code View with Current Line of Execution and a Break Point set

Enterprise Architect not only allows you to set up break points in the code, view local
variables and stack trace details, but it also allows you to visualize these details by
capturing the execution as a Sequence diagram. The Debug Workbench works in
conjunction with Enterprise Architect’s Source Code view to do this.

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 11

Figure 10 - Debug Workbench

For more information see the Enterprise Architect Help Index: “Profiling and
Debugging”.

Sequence Diagrams of Code Execution
Sequence diagrams can be generated when executing code from the debugger. There are
two methods available: Selecting the Main() operation in a class and from the context
menu generate the Sequence Diagram, or by setting up break points in the code and
generating the diagram between two break points.

ResolverResolveConsole

1.0 Main()

1.1 ResolveConsole()

1.2 DoResolve(string, CallbackOption)

1.3 Resolve(string, IResolveCallback)

1.4 HostResolved(IPHostEntry)

1.5 DisplayResults(IPHostEntry)

Figure 11 - Example Sequence Diagram Generated from Execution of Code.

For more information on generating Sequence Diagrams - see help: “Generate Sequence
Diagrams”.

Test Plans – Attaching Test Documents
There are often numerous documents associated with the testing process. Enterprise Architect
provides a number of methods for attaching test related documents to Elements. These are as
follows:

 Using links to external documents.

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 12

 Internally stored RTF Documents. In Enterprise Architect there are two types of
internally stored RTF documents:

o Linked Documents

o Document Artifacts Element.

External Documents
Any Enterprise Architect element can contain a set of external file references using the
File Tab under the Element Properties dialog. Only the file path is stored for such
references, not the content, which means any file format may be referenced
(“Launched”). Similarly, generated reports only contain the meta-information for these
references, such as file path and description, not the file content itself.

Linked Documents
RTF documents can be added to any element as internally stored documents (Linked
Documents). These are accessible by selecting an element and using either:

 Right –click | Linked Document

 Ctrl-Alt-D

This will open the RTF Editor with an option to start from a template or a blank
document. There is a default set of templates available. You can define (or import) your
own company templates in the resources section: Resources View | Templates | Linked
Document Templates.

Document Artifacts Elements
Document Artifacts Elements are accessible from:

 Toolbox | Deployment | Document Artifact.

On creation of one of these elements, the Element Properties window is displayed by
default. On closing this, double-clicking on the element will open the RTF Editor.

RTF Editor
The RTF editor provides for full editing of RTF documents. All options are available
using the context menu in the editable region. Below is a view of the context menu
selection:

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 13

Figure 12: The RTF editor
provides a full menu
accessible by right-clicking
anywhere in the document
text area.

Figure 12 - Internal RTF Editor Menu

To import a document into the RTF editor use the context menu option: File | Import.
For example, you can import an ‘RTF saved’ copy from an external document, such as a
.doc file.

Outputting RTF Documents
When in the RTF editor; these documents can be output directly by selecting: File | Print
from the context menu.

They can also be output using the RTF report generator by including in the RTF report-
template the following Sections:

 Element::Model Document

 Package::Package Element::Model Document.

Below is a view of the RTF editors Sections area, with the Element::Model Document
section selected:

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 14

Figure 13: This is the section used in
RTF report templates for outputting:

- Element.Linked Documents
- Document Artifacts

Figure 13 - RTF report generator Section for Documents

For more information, see the help section: “Creating Documents | RTF Documents” &
“Modeling with Enterprise Architect | Working with Elements | Linked Documents”

Templates
When creating a new document using the “Copy Template” drop-down, there is a default
‘Test Plan’ template available. User defined templates (i.e. a corporate standard test plan
template) can be added in Enterprise Architect’s Resources section under:

 Resources | Templates | RTF Templates | Linked Document | Templates.

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 15

Managing Test Cases in the Modeling Environment
While the approach to modeling test cases will vary according to development methodology, in
this section we present some specific approaches that can be readily adapted to suit different
methodologies.

Our first approach is most applicable to "white-box testing", where tests are defined according
to specific aspects of the system's underlying implementation. The second approach is useful
under "black-box testing" conditions, where we test directly against functional system
requirements, without regard to implementation details.

In both cases, we give consideration to how the Test cases are organized with respect to the
model hierarchy and what implications this has for reporting, traceability and other analysis
activities.

White-Box Testing: Implementation Elements Define the Tests
Following is an excerpt from the Enterprise Architect Example model, which shows an
example of elements containing tests in two different diagram layouts. Figure 14 shows the
standard class diagram format, without test information displayed, while Figure 15 uses the test
view diagram format.

Account

- bill ingAddress: string
- deliveryAddress: string
- emailAddress: string
- name: string

+ createNewAccount() : void
+ loadAccountDetails() : void
+ markAccountClosed() : void
+ retrieveAccountDetails() : void
+ submitNewAccountDetails() : void

«property»
+ Order() : Order
+ Basket() : ShoppingBasket
+ Bil l ingAddress() : string
+ DeliveryAddress() : string
+ EmailAddress() : string
+ Name() : string

Transaction

- date: Date
- orderNumber: string

+ loadAccountHistory() : void
+ loadOpenOrders() : void

«property»
+ LineItem() : LineItem
+ Account() : Account
+ Date() : Date
+ OrderNumber() : string

Figure 14 - Class Diagram – Attributes and Operations Visible.

Account

test scripts
(Not Run) Cannot Create New Account
(Not Run) Create Account - Basic Path
(Not Run) No Submit
(Not Run) Validation fails

Unit: :
Unit: :
Unit: :
Unit: :

Transaction

test scripts
Unit: : (Not Run) Confirm Quantity
Unit: : (Not Run) No History
Unit: : (Not Run) View History
Unit: : (Not Run) Zero Quantity

 Figure 15 - Class Diagram – Test Cases Visible

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 16

Defining tests directly against implementation elements, as above, is useful for initial tests on a
newly created Class or as a permanent set of ‘regression tests’. It may also be useful when
relating tests to elements that specify system behavior, such as Requirement or Use Case
elements.

 Note: At higher levels of abstraction, the above approach may be equally
applied to black-box testing, where Requirement elements for example,
contain internal tests.

Black-Box Testing: Using Maintenance Elements to Establish Traceability
During the development and maintenance phases of a system, issues will be reported against
specific components and enhancements will be made over time. Enterprise Architect's Issue and
Change elements can contain test definitions, and thus provide traceability from a specific
maintenance event to the affected system component and its subsequent testing. The following
is a simple example, using the Account class (depicted earlier):

Account

test scripts
Unit: : (Not Run) Basic Path - Administrator
Unit: : (Not Run) Basic Path - Client
Unit: : (Not Run) Cannot Create New Account
Unit: : (Not Run) No Submit
Unit: : (Not Run) No to Close
Unit: : (Not Run) Outstanding Transactions
Unit: : (Not Run) Validation fails

Probem with Create Account

test scripts
Unit: : (Fail) Cannot Create New Account
Unit: : (Not Run) Validation fails

Close Account

test scripts
Unit: : (Fail) Outstanding Transactions

Figure 16 - Class and Related Issues Containing Tests

Where tests are captured using a separate element, a relationship such as a Dependency
connector provides direct traceability from a system element to its testing.

Such relationships can be constructed diagrammatically as in the above example, or using the
Relationship Matrix as in Figure 17.

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 17

Figure 17 - Association of the Elements containing Test Cases to the Classes.

The Hierarchy View (Ctrl+Shift+4) provides an alternate view of the traceability between the
Issue elements and the Class elements.

Organizing Testing by Release
When developing multiple releases it is more preferable to separate the system and test model
elements and store the testing analysis in a separate package grouped by iteration such as build
or release. These test cases can be related by Package structure, or by Connectors.

Below is a classic example of setting up Issue elements, containing test cases, in a set of release
related packages:

Project View Diagram

Issue: DrawSqare() does not fi l l .

test scripts
 (Pass) Check the colour fi l l property - Circles
 (Pass) Check the colour fi l l property - squares

Unit: :
Unit: :

Change: Add fuctionality to draw a circle

test scripts
 (Pass) User can draw a circle
 (Fail) User Can fi l l a cirlce

Unit: :
Unit: :

Figure 18 - Release Specific Packages with Elements containing Test Scripts

Where connectors are required, these can be set up using the relationship matrix (see Figure 17).

There are many different methods that can be used for grouping and arranging correction tasks
and testing in a release. They can be grouped by functional areas, by developers etc. These
groupings can also vary; they can be by Packages, Swim-lanes and/or Boundaries etc.

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 18

Below is an example of grouping by Release/Developer. The diagram uses swim-lanes to
define a column for the original issues and a column for the associated corrections.

Project View Diagram

Issue Corrections

Change: Add fuctionality to draw a circle

test scripts
 (Pass) User can draw a circle
 (Fail) User Can fil l a cirlce

Unit: :
Unit: :

Issue: DrawSqare() does not fi l l.

test scripts
 (Pass) Check the colour fi l l property - Circles
 (Pass) Check the colour fi l l property - squares

Unit: :
Unit: :

Color change on object affects background

test scripts
 (Not Run) Check object color change - Circles
 (Not Run) Check object color change - Polygons

Unit: :
Unit: :

Re-write of color fi l l routine

«trace»

Figure 19 - Issues with Tests defined by Developer in 'Releases' Packages

Figure 20An alternative is to group changes into sets based on functional area (), but including

relationships to the human resources used (e.g. developers and testers etc. – see Figure 21).
Project View Diagram

Issue Corrections

Change: Add fuctionality to draw a circle

test scripts
Deferred) User can draw a circle
Fail) User Can fil l a cirlce

Unit: : (
Unit: : (

Color change on object affects background

test scripts
Not Run) Check object color change - Circles
Not Run) Check object color change - square

Unit: : (
Unit: : (

Re-write of color fi l l
routine

Issue: DrawSqare() does not fi l l.

test scripts
Pass) Check the colour fi l l property - Circles
Pass) Check the colour fi l l property - squares

Unit: : (
Unit: : («trace»

Figure 20 - Grouping Issues by functional area

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 19

Testers Changes Developer

Functional Area 1

+ Change: Add fuctionality to draw a circle
+ Re-write of color fil l routine
+ Issue: DrawSqare() does not fi l l.
+ Color change on object affects background

Functional Area 2

+ Add fuctionality to draw a circle
+ Update of color fi l l routine
+ Color change on object affects background
+ DrawSqare() does not fi l l.

Mark Heinz

(from Testers)

Mary Kruger

(from Testers)

Joe Dev ici

(from Testers)

Functional Area 3

+ Issue1

Release 10.1.1

Kumar Singh

(from Developers)

Roy McKinnon

(from Developers)

Jiansheng Li

(from Developers)

Sam Carloni

(from Developers)

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

 Figure 21 - Diagram of Testers and Developers Assigned to Packages

Typically relationships to testers and developers can be defined in the main diagram of the
release.

Another alternative means of linking back to the code modified is to use partitions that are
‘instances’ of the classes or the components being tested. These can contain the Issue elements
as children:

Project View Diagram

Trxn Issues :Transaction Accnt Issues :Account

Issue1

test scripts
 (Not Run) Add Item

: (Not Run) Add Item - zero entry
Unit: :
Unit:

Issue2

test scripts
 () Confirm Quantity

: : () No History
: : () View History

 () Zero Quantity

Unit: :
Unit
Unit
Unit: :

Issue3

test scripts
Unit: : () Cannot Create New Account
Unit: : () Create Account - Basic Path
Unit: : () No Submit
Unit: : () Validation fails

Figure 22 - Using Partitions as 'Instances' of classes to contain Issues

Hint: The partitions can be set as instances of the related class using:
Advanced | Instance Classifier, or Ctrl+L.

Enterprise Architect offers many other alternatives for using this type of grouping.

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 20

Color Coding Elements Based on Test Status
Custom Elements such as Issues, Changes and Requirements may be color coded to enable
quick visual cues indicating their status. To enable color coding for Issues and Changes:

1. From the menu, select Tools | Options | Objects

2. Check the [] Show Status colors on diagrams Checkbox

Once color coding has been enabled, it can be applied by selecting an element and in the
elements properties setting the Status. Below are examples of Issues, set from top down, to
‘Validated’, ‘Implements’ and ‘Proposed’:

Issue Status: Validated

Issue Status: Implemented

Issue Status: Proposed

This gives a clear view of the final status of the set of tests against one Issue. On completion
of the testing, all Elements will be displayed with a green (validated) status coloring.

Hint: Status Types and the associated colors can be user-defined
using the main menu option: Settings | General Types | Status Types

Using Profiles to Add User-defined Testing Fields
Using Tagged Values, you can enter any number of additional attributes such as the
Email of a user pointing out a bug, the release affected, etc.

Tagged Values can be defined on a one-off basis for any element, or predefined to be
included on creation of a new element.

Tagged value data for an Element is available as a separate window, which is accessed
using Ctrl+Shift+6 (or from the main menu View | Tagged Values).

 See Figure 23 for a diagram showing a one-off addition of a Tagged Value.

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 21

Figure 23 - Issues with the Tagged Value Sheet allowing the Assignment of Attributes

How to Add One-off Tagged Values to Requirements

1. Right-click the Requirement

2. Select Add | Add Tagged Value…

3. Enter the name of the new Attribute. (eg. “Release”)

4. Enter the value for the new Attribute. (eg. “10.1.4”)

5. Click OK to set the Attribute.

Predefining Tagged Values Types for Test Cases
Any Element in Enterprise Architect, including Issue and Change Elements, can have
an extended set of attributes defined for a project. The Element attributes can be
predefined using either a UML Profile or a Template. See Figure 24 for an example
of an element using a predefined set of Tagged Values for a project’s Issue Elements.

Figure 24 - Using Predefined Tagged Values

The predefined Tagged Values types can include a number of standard formats, such
as date/time, calendar view, and drop-down lists, etc.

These extended attributes can also be viewed directly on the Element in the diagram.
To set this mode for a diagram, right-click on the diagram, in the context menu
select: Diagram Properties | Visible Compartments [] Tags. Below is the same
element in Figure 24, viewed in this mode.

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 22

DrawSqare() does not fi l l image.

tags
Coder = Mary Joyce
Comments =
External Results =
Release = 10.1.4
Status =
Test Completed = 12/08/2008
Tester = Frank Smith

(from 10.1.4)
Figure 25 - Tagged Values Visible on Elements.

For more information on extending Issue and Change Element attributes using Tagged
Values see the Appendix - Defining Attributes Using a Profile or a Template.

Viewing and Reporting
Aside from opening the Testing Workspace, there are several facilities for viewing the test
scripts and reporting on test scripts. These are:

 Reporting using :

o Standard test reports

o RTF report generator

o Search results reports

o HTML reporting

Built-in Test Reports
Enterprise Architect supports two standard test reports:

 Testing Report

 Testing Details

Testing Report
The Testing Report allows for filtering on Test Case Type only. To access this report;
from the main menu select: Project | Documentation | Testing Report…

Following is the dialog for creating a Testing report;

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 23

This generates documents with a format as follows:

Testing Details
The Testing Details Report allows for filtering to be set up to narrow the output
generated. To access this report; from the main menu select: Project | Documentation
| Testing Details…

The following shows the dialog for creating a Testing report along with the filter
options available;

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 24

This generates documents with a simple format as follows:

RTF Test Reports

The RTF template report generator includes a report template ‘{testing template}’ that
can be used as a starter for creating user-defined test documents.

The RTF report generator is accessible using Project | Documentation | Rich Text
Format (RTF) Report or F8. Below is output generated using the default {testing
template};

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 25

For more information on defining templates in the RTF format see Help | Creating
Documents | RTF Documents or see the RTF document generation whitepaper on:
http://www.sparxsystems.com.au/resources/whitepapers/index.html

Search Reports
The Enterprise Architect model search facility (Ctrl-F) offers two options for defining
search filters. These are by using either the Query Builder or a SQL Search.

Query Builder Searches
The standard search using the Query Builder returns results by Element (e.g. any
Element that has one or many failed Tests). The output can be used to generate simple
reports.

Of the predefined searches there is a search: Failed Internal Tests. This searches for
elements containing internal Test Cases where the search term is in any common Test
Case field and the Status value is 'Fail'. The following shows the results page after
running this search.

Figure 26 - List of Elements with Tests Cases that have ‘Status’ set to 'Fail’.

http://www.sparxsystems.com.au/resources/whitepapers/index.html

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 26

User defined searches can be easily created from within the Advanced Search window.

SQL Editor Searches

For filtering and reporting testing on a Sub-element level, the Search facility has an
option that allows users to define sub-element filters (e.g. a set of Element::TestCases).
This requires using a SQL statement that acts on the whole model; they cannot be set to
search a part of the model hierarchy.

The following example is for a search of Test data:

1. Create an advanced search using: Ctrl-F | Advanced | New Search

2. In the Create New Search Query dialog:

 In the field: Search Name - type in a name for the search.

 Select: SQL Editor.

 Press OK.

This will open the SQL dialog box:

In the Query: text box, add a SQL statement:

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 27

 For example: SELECT * FROM t_objecttests where status <> "Pass"

 Press Save

 In the Find In Model dialog press: Run Search

Tip: The following SQL statement will give the Package name,
Element name and test details:

 SELECT t_package.Name AS PackageName, t_object.Name AS
ElementName, t_objecttests.Test, t_objecttests.TestClass,
t_objecttests.TestType, t_objecttests.Status, t_objecttests.DateRun,
t_objecttests.RunBy, t_objecttests.CheckBy, t_objecttests.Notes,
t_package.Package_ID, t_object.Object_ID

FROM (t_package INNER JOIN t_object ON t_package.Package_ID =
t_object.Package_ID) INNER JOIN t_objecttests ON t_object.Object_ID =
t_objecttests.Object_ID;

Below is a partial view of the output from the SQL statement in the tip above:

This can be printed by clicking on the above, and selecting the Print option from the
context menu.

The SQL query builder only allows searches on the whole model, however it can used
to generate a clear set of Test Cases using any conditions defined in the SQL statement.

 Note: Class defines the Test Case Class (unit, Integration, etc.). These are
defined numerically by the order displayed in the Test View window tab.
Unit = 1, Integration=2, etc.

HTML reports
HTML reports can also be generated from EA. The HTML report generator is
accessible using Project | Documentation | HTML Report or Shift-F8.

Below is an example of the data displayed for one of the above Issues with test cases:

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 28

Figure 27 - Generated HTML viewed in a browser

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 29

Appendix
Import from Scenario, Constraints, Requirements and Other Tests
The test cases window supports importing data from other elements. This includes Scenarios,
Constraints, Internal Requirements and Test Cases.

Common uses of this feature are importing Test Cases for a Class or an Issue from a Use Case.
Below is an example of a Use Case showing a set of scenarios:

Figure 28 - A Use Case Scenario

To start an import process:

1) Select the Element where the data is to be imported.

2) Open the Testing Window (Alt+3)

3) Right-click on the list of tests, then from the context menu, select an import type from
the list of options. The following image shows the context menu;

Figure 29 - Option to Import Scenarios to Test Cases

This opens the import dialog. Use the Select Element drop-down to retrieve a list of possible
Elements that contain the scenarios:

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Sy Page 30 stems 2008

On selection of an element, the scenarios available are displayed in Selected Items to Import. A
set of entries can then be selected. The button: All - selects all entries to import.

On selecting OK, the selected items will be added to the current set of Test Cases:

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 31

Defining Element Attributes Using a Profile
Elements can be pre-defined to include a set of user-defined attributes. These are used to
document user specific qualities. Although these attributes cannot be added to the
Element::Test Cases, they can be added to the element to define attributes related to the
set of test cases. For example, attributes could store the date, product release number and
contact information associated with an error report.

The additional attributes can be defined using either a Model Template or a Profile
Definition.

A short comparison of these two options is as follows:

1. The Template definition is the simplest to set up, however:

a. It pre-sets qualities of the default Element type used (e.g. An Issue
Element defined in a template package dictates how all future Issue
elements will be created for that model).

b. Only one template definition can be made for any given element type for
a given model (only one Issue type can be pre-set).

2. A Profile while more complex to set up, allows for multiple extension types for a
given Element type.

Both of these require Attributes to be defined using the Tagged Values definition.

 Note: If the project contains a number of Elements of the same type
that contain different attributes, (i.e. Issue-Pre-Test, Issue-Post-Test)
then the Profile approach, although more complex to set up, is the better
one to use.

For more information on using a Template, see: Help | Index: Template, Package,
Settings.

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 32

Defining Tagged Values
Tagged values allow users to define any number of fields with a wide variety of
predefined or user-defined data types.

To set up a Tagged Value - select from the main menu Settings | UML | Tagged Value
Types. This will bring up the definition window as shown below.

Comment: Ben I think this does
need to stay as is – it sets the
context for the examples below. I
have cut it down and updated to
reflect the latest build

Figure 30 - Tagged Values definition window.

In the example above, the Tagged Value selected, called “Status”, uses a predefined type
to display a drop-down list of selectable options. In the Detail area it contains:

Type=Enum;
Values=Pre-Test, Testing, Returned, Cancelled, Deferred, Pass, Failed;
Default=Pre-Test;

When viewed in the Tagged Values window this is presented as a drop-down option box:

Figure 31 - Elements definition with associated Tagged Values.

There are numerous standard types available such as numeric and string types;
Enumerated lists (see above), Date-Time, Boolean, Memo, etc. For more information
on setting up the standard types and a list of types available in Enterprise Architect’s
help, use the Index tab to locate ‘Predefined Tagged Value Types’

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 33

Defining Additional Attributes Using a Profile
Enterprise Architect supports the creation of Profiles. Profiles allow the user to define a
set of extensions to standard Elements using Tagged Values. See Defining Tagged
Values above.

To create a Profile:

1. In the Project Browser, set up a specific package that will contain the
Profile

2. Create a diagram for the Profile under this Package
3. In the UML toolbox open the Profile section

5. Drag the Profile element onto the diagram.

Once you have entered a name for the profile, a package will be created with the
«profile» stereotype and a child diagram beneath it. This child diagram (eg. ‘Testing
Profile’ in the image below) will be used to add stereotypes to the profile.

To add a new Element definition:

1. Open the system created diagram contained in the «profile» package

2. Create a Metaclass element by dragging the Metaclass tool from the
Profile Toolbox. This will bring up a dialog box to select the type of
Element that is to be created

3. For an Issue select the Issue Element type

4. Press OK.

The Metaclass will appear as:

«metaclass»
Issue

To define where the Tagged Values will be included in the profile:

1. Drag the Stereotype tool, from the Profiles toolbox, onto the diagram

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 34

2. In the Properties dialog box, select the Name field. Type in your preferred
name for the element in the new Toolbox, i.e. ‘SystemTests’

3. Press OK in the Properties dialog

4. From the Profile Toolbox click on the Extension Connector, select the new
Stereotype element ‘Bug’ and drag the mouse to the Requirement
Metaclass. This should create an Extension connector between these two
elements.

Below is a view of the elements and connection created:

«metaclass»
Issue

SystemTests

«extends»

To add the Tagged Values

1. Select the Stereotype (i.e. ‘SystemTests’)
2. From the context menu, select Attributes
3. In the Attributes dialog box, add as a new entry in the Name field, for each

of the Tagged Values created above, you want included in this
‘SystemTests’ Element.

Below is an example of a the above ‘SystemTests’ populated with some of the Tagged
Values defined in Figure 30 - Tagged Values definition window.

«metaclass»
Issue

SystemTests

«extends»

- BuildNo: int
- Coder: int
- Status: int
- Test Completed: int
- Tester: int

 Note: In the case of creating simple String or Boolean Tagged Values, these
do not need to be defined in the Tagged Values definition, but can be
entered directly in the Attributes of the ‘SystemTests’ Element.

Enterprise Architect Series: Using EA
Working with Test Features 1.1 UML 2 Case Tool by Sparx Systems

http://www.sparxsystems.com

© Sparx Systems 2008 Page 35

Any number of these definitions can be set up in one profile. Each Stereotype Element
would need to have a unique name.

Below is an example of profiles for two user-defined elements (in swimlanes) – one for
logging new features and one for logging changes with related test details. See Figure
31 for an example of the ChangeTest.

New Feature Change Test

AddedFeature

«metaclass»
Change

«metaclass»
Feature

+ isStatic: Boolean = false

«extends» «extends»

ChangeTest

- Required By
- Reviewer
- Review Status
- Review Completed
- Reviewer Comments
- Documentation Required
- Documentation Assigned To
- Documentation Completed
- Documentation Reviewed By

- Status
- Release
- Test Completed
- External Results
- Coder
- Tester
- Comments: memo

To set the new Element types to be viewed in the Toolbox

1. Select the «profile» package

2. Right-click and from the context menu, select Save Package to UML
Profile.

3. Set the filename to save the XMI file

4. Select Save

5. Open the Resources View

6. From the Resources tree, select UML Profiles

7. Right-click and from the context menu, select Import Profile.

Once this has been imported, it can be included on the Toolbox using the following:

1. Select the newly imported profile

2. Right-click on the new profile and from the context menu select: Show
Profile in UML Toolbox.

A new Toolbox with the name of your Profile package will be added to the Toolbox.
Now you can create your custom Feature and Change Elements in any package by
dragging these from the Toolbox.

	Introduction
	Test Tools
	Test Case Definitions:
	Element Test cases
	Test Case Fields
	Setting a Diagram to Show Test Scripts
	Import from Scenario, Constraints, Requirements and Other Tests

	Test Case Elements

	Build, Run, Debug & Unit Testing
	MDA Transform NUnit or JUnit test Classes
	Tracing Compiler errors to the Modeling environment
	xUnit Test Results Recorded in Test Cases
	Testing & Visualization – using Debug Workbench
	Sequence Diagrams of Code Execution

	Test Plans – Attaching Test Documents
	External Documents
	Linked Documents
	Document Artifacts Elements
	RTF Editor
	Outputting RTF Documents
	Templates

	Managing Test Cases in the Modeling Environment
	White-Box Testing: Implementation Elements Define the Tests
	Black-Box Testing: Using Maintenance Elements to Establish Traceability
	Organizing Testing by Release
	Color Coding Elements Based on Test Status
	Using Profiles to Add User-defined Testing Fields
	Predefining Tagged Values Types for Test Cases

	Viewing and Reporting
	Built-in Test Reports
	RTF Test Reports
	Search Reports
	HTML reports

	Appendix
	Import from Scenario, Constraints, Requirements and Other Tests
	Defining Element Attributes Using a Profile
	Defining Tagged Values
	Defining Additional Attributes Using a Profile

