
Enterprise Architect Add-In
Model

ENTERPRISE ARCHITECT

User Guide Series

Author: Sparx Systems

Date: 2022-10-03

Version: 16.0

CREATED WITH

Table of Contents

Enterprise Architect Add-In Model 6
The Add-In Manager 7
Create and Deploy Add-Ins 8

Create Add-Ins 9
Define Menu Items 10
Deploy Add-Ins 12
Tips and Tricks 14

Add-In Search 16
EA_SampleSearch 17
XML Format (Search Data) 18

Add-In Events 20
EA_OnAddinPropertiesTabChanging 21
EA_Connect 22
EA_Disconnect 23
EA_GetMenuItems 24
EA_GetMenuState 26
EA_GetRibbonCategory 28
EA_MenuClick 29
EA_OnOutputItemClicked 31
EA_OnOutputItemDoubleClicked 32
EA_ShowHelp 33

Broadcast Events 34
Add-In License Management Events 36

EA_AddinLicenseValidate 37
EA_AddinLicenseGetDescription 38
EA_GetSharedAddinName 39

Custom Table Events 41
EA_OnCustomTableBeginEdit 42
EA_OnCustomTableEndEdit 43
EA_OnCustomTableSelectionChanged 44
EA_OnCustomTableCellUpdated 45

Schema Composer Events 46
EA_GenerateFromSchema 47
EA_GetProfileInfo 48
EA_IsSchemaExporter 49

Compartment Events 50
EA_QueryAvailableCompartments 51
EA_GetCompartmentData 53

Context Item Events 56
EA_OnContextItemChanged 57
EA_OnContextItemDoubleClicked 58
EA_OnNotifyContextItemModified 59

EA_FileClose 60
EA_FileNew 61
EA_FileOpen 62
EA_OnPostCloseDiagram 63
EA_OnPostInitialized 64

EA_OnPostOpenDiagram 65
EA_OnPostTransform 66
EA_OnPreExitInstance 67
EA_OnRetrieveModelTemplate 68
EA_OnTabChanged 70
EA_LoadWindowManager 71
Model Validation Events 72

EA_OnInitializeUserRules 73
EA_OnStartValidation 74
EA_OnEndValidation 75
EA_OnRunElementRule 76
EA_OnRunPackageRule 77
EA_OnRunDiagramRule 78
EA_OnRunConnectorRule 79
EA_OnRunAttributeRule 80
EA_OnRunMethodRule 81
EA_OnRunParameterRule 82
Model Validation Example 83

Post-New Events 89
EA_OnPostNewElement 90
EA_OnPostNewConnector 91
EA_OnPostNewDiagram 92
EA_OnPostNewDiagramObject 93
EA_OnPostNewAttribute 94
EA_OnPostNewMethod 95
EA_OnPostNewPackage 96
EA_OnPostNewGlossaryTerm 97

Pre-Deletion Events 98
EA_OnPreDeleteElement 99
EA_OnPreDeleteAttribute 100
EA_OnPreDeleteMethod 101
EA_OnPreDeleteConnector 102
EA_OnPreDeleteDiagram 103
EA_OnPreDeleteDiagramObject 104
EA_OnPreDeletePackage 105
EA_OnPreDeleteGlossaryTerm 106

Pre New-Object Events 107
EA_OnPreNewElement 108
EA_OnPreNewConnector 109
EA_OnPreNewDiagram 110
EA_OnPreNewDiagramObject 111
EA_OnPreDropFromTree 112
EA_OnPreNewAttribute 113
EA_OnPreNewMethod 114
EA_OnPreNewPackage 115
EA_OnPreNewGlossaryTerm 116

Tagged Value Events 117
EA_OnAttributeTagEdit 118
EA_OnConnectorTagEdit 119
EA_OnElementTagEdit 120
EA_OnMethodTagEdit 121

Technology Events 122
EA_OnInitializeTechnologies 123
EA_OnPreActivateTechnology 124
EA_OnPostActivateTechnology 125
EA_OnPreDeleteTechnology 126
EA_OnDeleteTechnology 128
EA_OnImportTechnology 129

Technology Rules 130
EARules_Initialize 131
Diagram Appearance Rule Events 133

EARules_ClosePartitionName 134
EARules_ElementDisplayName 135
EARules_GetCompartmentItem 136
EARules_GetCompartmentName 138
EARules_GetNameUnderline 139
EARules_GetPropertyString 140
EARules_GetShapeScript 141
EARules_ShowStereotype 142
EARules_StereotypeDisplayName 143

User Interface Rule Events 144
EARules_AllowNesting 145
EARules_AppendChildDiagrams 146
EARules_AppendChildElements 148
EARules_CanOverrideStereotype 150
EARules_CanProxy 151
EARules_CanReparent 152
EARules_CreateModel 153
EARules_EnableElementProperty 154
EARules_ForceLength 156
EARules_GetEquivalentDiagram 157
EARules_IsAdjustable 158
EARules_PropagateStereotype 159
EARules_ShowElementProperty 160
EARules_ShowFrame 162
EARules_ShowParentFrame 163

Custom Views 164
Create a Custom View 165

Custom Docked Window 166
MDG Add-Ins 168

MDG Events 169
MDG_BuildProject 170
MDG_Connect 171
MDG_Disconnect 172
MDG_GetConnectedPackages 173
MDG_GetProperty 174
MDG_Merge 175
MDG_NewClass 178
MDG_PostGenerate 179
MDG_PostMerge 180
MDG_PreGenerate 181
MDG_PreMerge 182

MDG_PreReverse 183
MDG_RunExe 184
MDG_View 185

Workflow Add-In Events 186
EA_AllowPropertyUpdate 187
EA_AllowTagUpdate 188
EA_CanEditProperty 189
EA_CanEditTag 190

Enterprise Architect Add-In Model 3 October, 2022

Enterprise Architect Add-In Model

The Add-In facility provides a means of extending Enterprise Architect, allowing the programmer to enhance the user
interface by adding new menus, sub menus, windows and other controls to perform a variety of functions. An Add-In is
an ActiveX COM object that is notified of events in the user interface, such as mouse clicks and element selections, and
has access to the repository content through the Object Model. Add-Ins can also be integrated with the license
management system.

Using this facility, you can extend Enterprise Architect to create new features not available in the core product, and these
can be compiled and easily distributed to a community of users within an organization, or more broadly to an entire
industry. Using the Add-In facility it is even possible to create support for modeling languages and frameworks not
supported in the core product.

Add-Ins have several advantages over stand-alone automation clients:

Add-Ins can (and should) be written as in-process (DLL) components; this provides lower call overhead and better·
integration into the Enterprise Architect environment

Because a current version of Enterprise Architect is already running there is no requirement to start a second copy of·
Enterprise Architect via the automation interface

Because the Add-In receives object handles associated with the currently running copy of Enterprise Architect, more·
information is available about the current user's activity; for example, which diagram objects are selected

You are not required to do anything other than to install the Add-In to make it usable; that is, you do not have to·
configure Add-Ins to run on your systems

Because Enterprise Architect is constantly evolving in response to customer requests, the Add-In interface is flexible·
The Add-In interface does not have its own version, rather it is identified by the version of Enterprise Architect it·
first appeared in; for example, the current version of the Enterprise Architect Add-In interface is version 2.1

When creating your Add-In, you do not have to subscribe to a type-library (Add-Ins created before 2004 are no·
longer supported - if an Add-In subscribes to the Addn_Tmpl.tlb interface (2003 style), it fails on load; in this event,
contact the vendor or author of the Add-In and request an upgrade)

Add-Ins do not have to implement methods that they never use·
Add-Ins prompt users via context menus in the tree view and the diagram·
Menu check and disable states can be controlled by the Add-In·

Add-Ins enhance the existing functionality of Enterprise Architect through a variety of mechanisms, such as Scripts,
UML Profiles and the Automation Interface. Once an Add-In is registered, it can be managed using the Add-In Manager.

(c) Sparx Systems 2022 Page 6 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

The Add-In Manager

If you want to check what Add-Ins are available on your system, and enable or disable them for use, you can review the
'Add-In Manager' dialog. This dialog lists the Add-Ins that have been registered on your system, and their current status
(Enabled or Disabled).

Access

Ribbon Specialize > Add-Ins > Manage Addin

Enable/Disable Add-Ins

Action Detail

Enable an Add-In To enable an Add-In so that it is available for use, select the 'Load on Startup'
checkbox corresponding to the name.

Click on the OK button.

Any Add-In specific features, facilities and Help are made available through·
the 'Specialize | <add-in name>' context menu option

Any defined Add-In windows are populated with information; select the·
'Specialize > Add-Ins > Addin Windows' ribbon option

Disable an Add-In To disable an Add-In so that it is not available for use, clear the 'Load on Startup'
checkbox corresponding to the name.

Click on the OK button.

All menu options, features and facilities specific to the Add-In are hidden and made
inactive.

Notes

When you enable or disable an Add-In, you must re-start Enterprise Architect to action the change·

(c) Sparx Systems 2022 Page 7 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Create and Deploy Add-Ins

This topic directs you to information on creating, testing, deploying and managing Add-Ins.

Create an Add-In

Task Information

Create the Add-In. Some basic steps on using an IDE to create your Add-in. See the Create Add-Ins
topic.

Define Menu Items. Some examples for defining menu items in an Add-in. See the Define Menu Items
topic.

Respond to Menu Events. Description and syntax on using the EA_MenuClick. See the EA_MenuClick topic.

Handle Add-In Events. See the Add-In Events topic.

Deploy your Add-In

Consideration Information

Deploy the Add-in For details on registering the add-in DLL see the Deploy Add-In topic.

Tricks and Traps See the Tricks and Traps topic.

Manage Add-Ins

Task Information

Register an Add-In
(developed in-house or
brought-in).

Brought-in applications are referred to as Commercial Off The Shelf (COTS)
software.

See the Register Add-In topic.

The Add-In Manager. See The Add-In Manager topic.

(c) Sparx Systems 2022 Page 8 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Create Add-Ins

Before you start you must have an application development tool that is capable of creating ActiveX COM objects
supporting the IDispatch interface, such as:

Embarcadero Delphi, or Borland Delphi·
Microsoft Visual Basic·
Microsoft Visual Studio .NET·

You should consider how to define menu items. To help with this, you could review some examples of Automation
Interfaces - examples of code used to create Add-Ins for Enterprise Architect - on the Sparx Systems web page.

Create an Enterprise Architect Add-In

Step Action

1 Use a development tool to create an ActiveX COM DLL project.

Visual Basic users, for example, choose File-Create New Project-ActiveX DLL.

2 Connect to the interface using the syntax appropriate to the language.

3 Create a COM Class and implement each of the general Add-In Events applicable to your Add-In. You
only have to define methods for events to respond to.

4 Add a registry key that identifies your Add-In to Enterprise Architect, as described in the Deploy Add-Ins
topic.

(c) Sparx Systems 2022 Page 9 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Define Menu Items

Tasks

Task Detail

Define Menu Items Menu items are defined by responding to the GetMenuItems event.

The first time this event is called, MenuName is an empty string, representing the
top-level menu. For a simple Add-In with just a single menu option you can return
a string.

 Function EA_GetMenuItems(Repository as EA.Repository, MenuLocation As
String, MenuName As String) As Variant

 EA_GetMenuItems = "&Joe's Add-In"

 End Function

Define Sub-Menus To define sub-menus, prefix a parent menu with a dash. Parent and sub-items are
defined in this way:

Function EA_GetMenuItems(Repository as EA.Repository, MenuLocation As
String, MenuName As String) As Variant

 Select Case MenuName

 Case ""

 'Parent Menu Item

 EA_GetMenuItems = "-&Joe's Add-In"

 Case "-&Joe's Add-In"

 'Define Sub-Menu Items using the Array notation.

 'In this example, "Diagram" and "Treeview" compose the "Joe's Add-In"
sub-menu.

 EA_GetMenuItems = Array("&Diagram", "&Treeview")

 Case Else

 MsgBox "Invalid Menu", vbCritical

 End Select

End Function

Define Further Sub-Menus Similarly, you can define further sub-items:

Function EA_GetMenuItems(Repository as EA.Repository, MenuLocation As
String, MenuName As String) As Variant

 Select Case MenuName

 Case ""

 EA_GetMenuItems = "-Joe's Add-In"

 Case "-Joe's Add-In"

 EA_GetMenuItems = Array("-&Diagram", "&TreeView")

 Case "-&Diagram"

 EA_GetMenuItems = "&Properties"

 Case Else

 MsgBox "Invalid Menu", vbCritical

 End Select

(c) Sparx Systems 2022 Page 10 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

End Function

Enable/Disable menu
options

To enable or disable menu options by default, you can use this method to show
particular items to the user:

Sub EA_GetMenuState(Repository As EA.Repository, Location As String,
MenuName As String, ItemName As String, IsEnabled As Boolean, IsChecked As
Boolean)

 Select Case Location

 Case "TreeView"

 'Always enable

 Case "Diagram"

 'Always enable

 Case "MainMenu"

 Select Case ItemName

 Case "&Translate", "Save &Project"

 If GetIsProjectSelected() Then

 IsEnabled = False

 End If

 End Select

 End Select

 IsChecked = GetIsCurrentSelection()

End Sub

(c) Sparx Systems 2022 Page 11 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Deploy Add-Ins

Deploy Add-Ins to Users' Sites

Step Action

1 Add the Add-In DLL file to an appropriate directory on the user's computer; that is:

 C:\Program Files\(new dir)

2 Register the DLL as appropriate to your platform:

If compiled as a native Win32 DDL, such as VB or C++, register the DDL·
using the regsvr32 command from the command prompt
 regsvr32 "C:\Program Files\MyCompany\EAAddin\EAAddin.dll"

If compiled as a .NET DLL, such as C# or VB.NET, register the DLL using the·
RegAsm command from the command prompt
 C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\RegAsm.exe
 "C:\Program Files\MyCompany\EAAddin\EAAddin.dll" /codebase

3 Place a new entry into the registry using the registry editor (run regedit) so that
Enterprise Architect recognizes the presence of your Add-In.

4 Add a new key 'EAAddIns' under one of these locations:

For the current user only·
 - On Enterprise Architect 32 bit
 [HKEY_CURRENT_USER\Software\Sparx Systems\EAAddins]
 - On Enterprise Architect 64 bit
 [HKEY_CURRENT_USER\Software\Sparx Systems\EAAddins64]

For multiple users on a machine·
 - On Enterprise Architect 32 bit
 [HKEY_LOCAL_MACHINE\Software\Sparx Systems\EAAddins]
 - On Enterprise Architect 64 bit
 [HKEY_LOCAL_MACHINE\Software\Sparx Systems\EAAddins64]

Note: the Enterprise Architect 32 and 64 bit editions will only attempt to load
Add-Ins under the corresponding key - EAAddIns or EAAddIns64, respectively.

5 Add a new key under this key with the project name.

(c) Sparx Systems 2022 Page 12 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

(ProjectName) is not necessarily the name of your DLL, but the name of the
Project; in Visual Basic, this is the value for the property Name corresponding to
the project file.

6 Specify the default value by modifying the default value of the key.

7 Enter the value of the key by typing in the (project name).(class name), such as:

 EaRequirements.Requirements

where EaRequirements is the project name, as shown in this example:

(c) Sparx Systems 2022 Page 13 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Tips and Tricks

Considerations

Item Detail

GUID The registration GUID and name used to register an Add-In should be the same for
Enterprise Architect 32 bit and 64 bit versions. Only the name and/or location of
the DLL should be different.

Enterprise Architect 64 bit
and C++ Add-Ins

Apart from using the correct registration key (see step 4 in the Deploy Ad-Ins Help
topic) there is no special configuration for getting a 64 bit COM object running
under Enterprise Architect 64 bit.

.NET Add-Ins When generating a .NET assembly, you must explicitly set the 'Target Platform' to
x86/x64. Leaving it on 'Any CPU' could cause issues when Enterprise Architect 32
bit is run on a 64 bit version of windows.

Add a x64 Target to your project and rebuild the project.

Visual Studio has an issue when attempting to register a .NET assembly when the
Interop.EA is included in a project. It will attempt to use regasm for the
architecture Interop.EA was built for. We have found adding to the Post-Build
Script helps, if you uncheck the 'Register for COM interop' option in the project
settings (assuming you have permission to write to the registry).

 if $(PlatformName) == x64 (
"%Windir%\Microsoft.NET\Framework64\v4.0.30319\regasm" "$(TargetPath)")

 if $(PlatformName) == x86 (
"%Windir%\Microsoft.NET\Framework64\v4.0.30319\regasm" "$(TargetPath)")

Note: At the time of writing, .NET Add-ins will not work under Wine and using
Wine-Mono.

Java API The Java API loads the last installed Enterprise Architect and isn't affected when
using either the 32 or 64 version of the dll, as long as the SSJavaCOM DLL can be
found by the Java runtime.

Visual Basic 5/6 Users
Note

Visual Basic users should note that the version number of the Enterprise Architect
interface is stored in the VBP project file in a form similar to this:

Reference=*\G{64FB2BF4-9EFA-11D2-8307-C45586000000}#2.2#0#..\..\..\..\Pro
gram Files\Sparx Systems\EA\EA.TLB#Enterprise Architect Object Model 2.02

If you experience problems moving from one version of Enterprise Architect to
another, open the VBP file in a text editor and remove this line. Then open the
project in Visual Basic and use Project-References to create a new reference to the
Enterprise Architect Object model.

Holding State Information It is possible for an Add-In to hold state information, meaning that data can be
stored in member variables in response to one event and retrieved in another. There
are some dangers in doing this:

Enterprise Architect Automation Objects do not update themselves in response·
to user activity, to activity on other workstations, or even to the actions of other
objects in the same automation client; retaining handles to such objects
between calls can result in the second event querying objects that have no

(c) Sparx Systems 2022 Page 14 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

relationship with the current state of Enterprise Architect

When you close Enterprise Architect, all Add-Ins are asked to shut down; if·
there are any external automation clients Enterprise Architect must stay active,
in which case all the Add-Ins are reloaded, losing all the data

Enterprise Architect acting as an automation client does not close if an Add-In·
still holds a reference to it (releasing all references in the Disconnect() event
avoids this problem)

It is recommended that unless there is a specific reason for doing so, the Add-In
should use the repository parameter and its method and properties to provide the
necessary data.

Enterprise Architect Not
Closing

.NET Specific Issues

Automation checks the use of objects and will not allow any of them to be
destroyed until they are no longer being used.

As noted in the Automation Interface topic, if your automation controller was
written using the .NET framework, Enterprise Architect does not close even after
you release all your references to it. To force the release of the COM pointers, call
the memory management functions as shown:

 GC.Collect();

 GC.WaitForPendingFinalizers();

Additionally, because automation clients hook into Enterprise Architect, which
creates Add-Ins that in turn hook back into Enterprise Architect, it is possible to get
into a deadlock situation where Enterprise Architect and the Add-Ins will not let go
of one another and keep each other active. An Add-In might retain hooks into
Enterprise Architect because:

It keeps a private reference to an Enterprise Architect object (see the earlier·
Holding State Information), or

It has been created by .NET and the GC mechanism has not yet released it·
There are two actions required to avoid deadlock situations:

Automation controllers must call Repository.CloseAddins() at some point·
(perhaps at the end of processing)

Add-Ins must release all references to Enterprise Architect in the Disconnect()·
event; see the Add-In Events topic for details

It is possible that your Automation client controls a running instance of Enterprise
Architect where the Add-Ins have not complied with the rules. In this case you
could call Repository.Exit() to terminate Enterprise Architect.

Miscellaneous

In developing Add-Ins using the .NET framework you must select COM
Interoperability in the project's properties in order for it to be recognized as an
Add-In.

Some development environments do not automatically register COM DLLs on
creation. You might have to do that manually before Enterprise Architect
recognizes the Add-In.

You can use your private Add-In key (as required for Add-In deployment) to store
configuration information pertinent to your Add-In.

(c) Sparx Systems 2022 Page 15 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Add-In Search

Enterprise Architect enables Extensions to integrate with the Model Search. Searches can be defined that execute a
method within your Add-In and display your results in an integrated way.

Details

Item

The method that runs the search must be structured in this way.

Defines the XML structure expected by Enterprise Architect to specify search results.

In addition to the displayed results, two additional hidden fields can be passed into the XML that provide special
functionality.

CLASSTYPE - Returning a field of CLASSTYPE, containing the Object_Type value from the t_object table,·
displays the appropriate icon in the column in which you place the field

CLASSGUID - Returning a field of CLASSGUID, containing an ea_guid value, enables the Model Search to·
track the object in the Browser window and open the Properties window for the element by double-clicking in
the Model Search

(c) Sparx Systems 2022 Page 16 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_SampleSearch

This defines the signature required for the function Enterprise Architect calls when executing an Add-In search. The
name can be changed to any valid function name in your target programming language.

Syntax

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the Enterprise Architect model
about to be closed. Poll its members to retrieve model data and user interface status
information.

SearchText String

Direction: IN

Description: Provides the value (if any) entered by the user in the search term field
in the model search window.

XMLResults String

Direction: OUT

Description: Provides the value (if any) entered by the user in the search term field
in the model search window.

Return Value

The method must return any non-empty value for the results to be displayed.

(c) Sparx Systems 2022 Page 17 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

XML Format (Search Data)

This example XML provides the format for the sSearchData parameter of the RunModelSearch method.

 <ReportViewData UID=\"MySearchID\">

 <!--

 //The UID attribute enables XML type searches to persist column information. That is, if you run the search, group
by column or adjust

 //column widths, then close the window and run the search again, the format/organization changes are retained. To
avoid persisting column

 //arrangements, leave the attribute value blank or remove it altogether. Use this section to declare all possible
fields - columns that appear

 //in Enterprise Architect's Search window - that are used below in <Rows/>. The order of the columns of
information to be appended here must

 //match the order that the search run in Enterprise Architect would normally display. Furthermore, if you append
results onto a custom SQL

 //Search, then the order used in your Custom SQL must match the order used here.

 -->

 <Fields>

 <Field name=""/>

 <Field name=""/>

 <Field name=""/>

 <Field name=""/>

 </Fields>

 <Rows>

 <Row>

 <Field name="" value=""/>

 <Field name="" value=""/>

 <Field name="" value=""/>

 <Field name="" value=""/>

 </Row>

 <Row>

 <Field name="" value=""/>

 <Field name="" value=""/>

 <Field name="" value=""/>

 <Field name="" value=""/>

 </Row>

 <Row>

 <Field name="" value=""/>

 <Field name="" value=""/>

 <Field name="" value=""/>

 <Field name="" value=""/>

 </Row>

 </Rows>

(c) Sparx Systems 2022 Page 18 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

</ReportViewData>

(c) Sparx Systems 2022 Page 19 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Add-In Events

All Enterprise Architect Add-Ins can choose to respond to general Add-In events.

Events

Event

EA_Connect - Add-Ins can use this to identify their type and to respond to Enterprise Architect start up.

EA_Disconnect - Add-Ins can use this to respond to user requests to disconnect the model branch from an external
project.

EA_GetMenuItems - Add-Ins can use this to provide the Enterprise Architect user interface with additional Add-In
menu options in various context menus.

EA_GetMenuState - Add-Ins can use this to set a particular menu option to either enabled or disabled.

EA_GetRibbonCategory - Add-Ins can use this to identify the Ribbon panel in which to house their calling icon.

EA_MenuClick - received by an Add-In in response to user selection of a menu option.

EA_OnOutputItemClicked - informs Add-Ins that the user has clicked on a list entry in the system tab or one of the
user defined output tabs.

EA_OnOutputItemDoubleClicked - informs Add-Ins that the user has used the mouse to double-click on a list entry
in one of the user-defined output tabs.

EA_ShowHelp - Add-Ins can use this to show a Help topic for a particular menu option.

(c) Sparx Systems 2022 Page 20 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnAddinPropertiesTabChanging

Indicates that a value in a properties list added via Repository.AddPropertiesTab has been changed by the user.

Syntax

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains these EventProperty objects describing the field changed:

TabName: The name of the Add-Ins window tab changing·
PropID: Unique ID assign to Property item within the xml definition.·
ChangeValue: The value the Property is changing to.·
OriginalValue: The original value assigned to the Property·

Return Value

Return False to indicate that this change was rejected·
Return True to indicate that the change is accepted·

(c) Sparx Systems 2022 Page 21 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_Connect

Add-Ins can use EA_Connect events to identify their type and to respond to Enterprise Architect start up.

This event occurs when Enterprise Architect first loads your Add-In. Enterprise Architect itself is loading at this time so
that while a Repository object is supplied, there is limited information that you can extract from it.

There are two key uses for EA_Connect:

Initializing global Add-In data, along with identifying the Add-In as an MDG Add-In·
Initializing a Workflow script.·

Syntax

Function EA_Connect (Repository As EA.Repository) As String

The EA_Connect function syntax has this parameter:

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Return Value

A string identifying a specialized type of Add-In:

Type Details

"MDG" MDG Add-Ins receive MDG Events and extra menu options.

"Workflow" Workflow add-ins receive additional events to control user ability to change
specific fields.

"" A non-specialized Add-In.

(c) Sparx Systems 2022 Page 22 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_Disconnect

Add-Ins can use the EA_Disconnect event to respond to user requests to disconnect the model branch from an external
project.

This function is called when Enterprise Architect closes. If you have stored references to Enterprise Architect objects
(not recommended anyway), you must release them here.

In addition, .NET users must call memory management functions as shown:

 GC.Collect();

 GC.WaitForPendingFinalizers();

Syntax

Sub EA_Disconnect()

Return Value

None.

(c) Sparx Systems 2022 Page 23 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_GetMenuItems

The EA_GetMenuItems event enables the Add-In to provide the Enterprise Architect user interface with additional
Add-In menu options in various context menus. When a user selects an Add-In menu option, an event is raised and
passed back to the Add-In that originally defined that menu option.

This event is raised just before Enterprise Architect has to show particular menu options to the user, and its use is
described in the Define Menu Items topic.

Syntax

Function EA_GetMenuItems (Repository As EA.Repository, MenuLocation As String, MenuName As String) As
Variant

The EA_GetMenuItems function syntax has these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

MenuLocation String

Direction: IN

Description: A string representing the part of the user interface that brought up the
context menu. This can be TreeView, MainMenu, Diagram or Other. You can add
further values for MenuLocation at any time.

A MenuLocation of 'TreeView' would indicate that the menu was displayed in the
Browser window; 'MainMenu' would indicate that the menu was displayed from a
ribbon option, and 'Diagram' that the menu was displayed within a diagram. 'Other'
would indicate an unspecified location, which might be one of these:

Calendar·
Dialog·
Element List·
Gantt·
Model View·
Project View·
Relationship Matrix·
Reviews·
Search·
Specification Manager·

MenuName String

Direction: IN

Description: The name of the parent menu for which sub-items are to be defined. In
the case of the top-level menu this is an empty string.

(c) Sparx Systems 2022 Page 24 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Return Value

One of these types:

A string indicating the label for a single menu option·
An array of strings indicating multiple menu options·
Empty (Visual Basic/VB.NET) or null (C#) to indicate that no menu should be displayed·

In the case of the top-level menu it should be a single string or an array containing only one item, or empty/null.

(c) Sparx Systems 2022 Page 25 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_GetMenuState

Add-Ins can use the EA_GetMenuState event to set a particular menu option to either enabled or disabled. This is useful
when dealing with locked Packages and other situations where it is convenient to show a menu option, but not enable it
for use.

This event is raised just before Enterprise Architect has to show particular menu options to the user. Its use is further
described in the Define Menu Items topic.

Syntax

Sub EA_GetMenuState (Repository as EA.Repository, MenuLocation As String, MenuName as String, ItemName as
String, IsEnabled as Boolean, IsChecked as Boolean)

The EA_GetMenuState function syntax has these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

MenuLocation String

Direction: IN

Description: A string representing the part of the user interface that brought up the
menu. This can be TreeView, MainMenu or Diagram.

MenuName String

Direction: IN

Description: The name of the parent menu for which sub-items must be defined. In
the case of the top-level menu it is an empty string.

ItemName String

Direction: IN

Description: The name of the option actually clicked; for example, 'Create a New
Invoice'.

IsEnabled Boolean

Direction: OUT

Description: Set to False to disable this particular menu option.

IsChecked Boolean

Direction: OUT

Description: Set to True to check this particular menu option.

Return Value

(c) Sparx Systems 2022 Page 26 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

None.

(c) Sparx Systems 2022 Page 27 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_GetRibbonCategory

Add-Ins can use EA_GetRibbonCategory events to identify the Ribbon in which the Add-In should place its menu icon.

This event occurs when Enterprise Architect first loads your Add-In. Enterprise Architect itself is loading at this time so
that while a Repository object is supplied, there is limited information that you can extract from it.

The chief use for EA_GetRibbonCategory is in initializing the Add-In access point.

Syntax

Function EA_GetRibbonCategory (Repository As EA.Repository) As String

The EA_GetRibbonCategory function syntax has this parameter:

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Return Value

A string matching the name of the selected ribbon (in English if you are using a translated version). The possible names
are:

Start·
Design·
Layout·
Publish·
Specialize·
Construct·
Code·
Simulate·
Execute·
Manage·

It is not possible to include Add-Ins in the 'Specification - Specify' ribbon or 'Documentation - Edit' ribbon.

If the function isn't implemented (or if an invalid name is returned) the 'Add-In' menu will be available from the
'Specialize' ribbon, 'Add-Ins' panel.

(c) Sparx Systems 2022 Page 28 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_MenuClick

EA_MenuClick events are received by an Add-In in response to user selection of a menu option.

The event is raised when the user clicks on a particular menu option. When a user clicks on one of your non-parent menu
options, your Add-In receives a MenuClick event, defined as:

 Sub EA_MenuClick(Repository As EA.Repository, ByVal MenuLocation As String, ByVal MenuName As String,
ByVal ItemName As String)

This code is an example of use:

 If MenuName = "-&Diagram" And ItemName = "&Properties" then

 MsgBox Repository.GetCurrentDiagram.Name, vbInformation

 Else

 MsgBox "Not Implemented", vbCritical

 End If

Notice that your code can directly access Enterprise Architect data and UI elements using Repository methods.

Syntax

Sub EA_MenuClick (Repository As EA.Repository, MenuLocation As String, MenuName As String, ItemName As
String)

The EA_GetMenuClick function syntax has these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

MenuLocation String

Direction: IN

Description: A string representing the part of the user interface that brought up the
menu. This can be TreeView, MainMenu or Diagram.

MenuName String

Direction: IN

Description: The name of the parent menu for which sub-items are to be defined. In
the case of the top-level menu this is an empty string.

ItemName String

Direction: IN

Description: The name of the option actually clicked; for example, 'Create a New
Invoice'.

Return Value

(c) Sparx Systems 2022 Page 29 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

None.

(c) Sparx Systems 2022 Page 30 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnOutputItemClicked

EA_OnOutputItemClicked events inform Add-Ins that the user has clicked on a list entry in the system tab or one of the
user defined output tabs.

Usually an Add-In responds to this event in order to capture activity on an output tab they had previously created through
a call to Repository.AddTab().

Note that every loaded Add-In receives this event for every click on an output tab in Enterprise Architect, irrespective of
whether the Add-In created that tab. Add-Ins should therefore check the TabName parameter supplied by this event to
ensure that they are not responding to other Add-Ins' events.

Syntax

EA_OnOutputItemClicked (Repository As EA.Repository, TabName As String, LineText As String, ID As Long)

The EA_OnOutputItemClicked function syntax has these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

TabName String

Direction: IN

Description: The name of the tab that the click occurred in. Usually this would have
been created through 'Repository.AddTab()'.

LineText String

Direction: IN

Description: The text that had been supplied as the String parameter in the original
call to 'Repository.WriteOutput()'.

ID Long

Direction: IN

Description: The ID value specified in the original call to
Repository.WriteOutput().

Return Value

None.

(c) Sparx Systems 2022 Page 31 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnOutputItemDoubleClicked

EA_OnOutputItemDoubleClicked events inform Add-Ins that the user has used the mouse to double-click on a list entry
in one of the user-defined output tabs.

Usually an Add-In responds to this event in order to capture activity on an output tab they had previously created through
a call to Repository.AddTab().

Note that every loaded Add-In receives this event for every double-click on an output tab in Enterprise Architect,
irrespective of whether the Add-In created that tab; Add-Ins should therefore check the TabName parameter supplied by
this event to ensure that they are not responding to other Add-Ins' events.

Syntax

EA_OnOutputItemDoubleClicked (Repository As EA.Repository, TabName As String, LineText As String, ID As Long)

The EA_OnOutputItemClicked function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model; poll its members to retrieve model data and user interface status
information.

TabName String

Direction: IN

Description: The name of the tab that the click occurred in; usually this would have
been created through 'Repository.AddTab()'.

LineText String

Direction: IN

Description: The text that had been supplied as the String parameter in the original
call to 'Repository.WriteOutput()'.

ID Long

Direction: IN

Description: The ID value specified in the original call to
Repository.WriteOutput().

Return Value

None.

(c) Sparx Systems 2022 Page 32 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_ShowHelp

Add-Ins can use the EA_ShowHelp event to show a Help topic for a particular menu option. When the user has an
Add-In menu option selected, pressing F1 can be related to the required Help topic by the Add-In and a suitable Help
message shown.

This event is raised when the user presses F1 on a menu option that is not a parent menu.

Syntax

Sub EA_ShowHelp (Repository as EA.Repository, MenuLocation As String, MenuName as String, ItemName as String)

The EA_ShowHelp function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

MenuLocation String

Direction:

Description: A string representing the part of the user interface that brought up the
menu. This can be Treeview, MainMenu or Diagram.

MenuName String

Direction:

Description: The name of the parent menu for which sub-items are to be defined. In
the case of the top-level menu this is an empty string.

ItemName String

Direction:

Description: The name of the option actually clicked; for example, 'Create a New
Invoice'.

Return Value

None.

(c) Sparx Systems 2022 Page 33 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Broadcast Events

Overview

Broadcast events are sent to all loaded Add-Ins. For an Add-In to receive the event, they must first implement the
required automation event interface. If Enterprise Architect detects that the Add-In has the required interface, the event is
dispatched to the Add-In.

MDG Events add a number of additional events, but the Add-In must first have registered as an MDG-style Add-In,
rather than as a generic Add-In.

Event Type

Add-In License Management Events

Custom Table Events

Compartment Events

Context Item Events

File Close Event

File New Event

File Open Event

Model Validation Events

On Tab Changed Event

Post Close Diagram Event

Post Initialization Event

Post New Events

Post Open Diagram Event

Pre-Deletion Events

Pre-Exit Instance (not currently used)

On the creation of new objects

Retrieve Model Template Event

Schema Composer Events

Tagged Value Events

(c) Sparx Systems 2022 Page 34 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Technology Events

Transformation Event

(c) Sparx Systems 2022 Page 35 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Add-In License Management Events

Enterprise Architect Add-Ins can respond to events associated with Add-In License Management.

License Management Events

Event

EA_AddinLicenseValidate

EA_AddinLicenseGetDescription

EA_GetSharedAddinName

(c) Sparx Systems 2022 Page 36 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_AddinLicenseValidate

When a user directly enters into the 'License Management' dialog a license key that doesn't match a Sparx Systems key,
EA_AddInLicenseValidate is broadcast to all Enterprise Architect Add-Ins, providing them with a chance to use the
Add-In key to determine the level of functionality to provide. When a key is retrieved from the Sparx Systems Keystore
only the target Add-In will be called with the key.

For the Add-In to validate itself against this key, the Add-In's EA_AddinLicenseValidate handler should return
confirmation that the license has been validated. As the EA_AddinLicenseValidate event is broadcast to all Add-Ins, one
license can validate many Add-Ins.

If an Add-In elects to handle a license key by returning a confirmation to EA_AddinLicenseValidate, it is called upon to
provide a description of the license key through the EA_AddinLicenseGetDescription event. If more than one Add-In
elects to handle a license key, the first Add-In that returns a confirmation to EA_AddinLicenseValidate is queried for the
license key description.

Syntax

Function EA_AddInLicenseValidate (Repository As EA.Repository, AddinKey As String) As Boolean

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

AddinKey String

Direction: IN

Description: The Add-In license key that has been entered in the 'License
Management' dialog.

Return Value

Returns True if the license key is validated for the current Add-In. Returns False otherwise.

(c) Sparx Systems 2022 Page 37 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_AddinLicenseGetDescription

Before the Enterprise Architect 'License Management' dialog is displayed, EA_AddInLicenseGetDescription is sent once
for each Add-In key to the first Add-In that elected to handle that key.

The value returned by EA_AddinLicenseGetDescription is used as the key's plain text description.

Syntax

Function EA_AddinLicenseGetDescription (Repository as EA.Repository, AddinKey as String) As String

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open model. Poll
its members to retrieve model data and user interface status information.

AddinKey String

Direction: IN

Description: The Add-In license key that Enterprise Architect requires a description
for.

Return Value

A String containing a plain text description of the provided AddinKey.

(c) Sparx Systems 2022 Page 38 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_GetSharedAddinName

As an Add-In writer you can distribute keys to your Add-In via the Enterprise Architect Keystore, provided that your
keys are added using a prefix that allows the system to identify the Add-In to which they belong.
EA_GetSharedAddinName is called to determine what prefix the Add-In is using. If a matching key is found in the
keystore the 'License Management' dialog will display the name returned by EA_AddinLicenseGetDescription to your
users. Finally, when the user selects a key, that key will be passed to your Add-In to validate by calling
EA_AddinLicenseValidate.

Syntax

Function EA_GetSharedAddinName (Repository as EA.Repository) As String

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open model. Poll
its members to retrieve model data and user interface status information.

Return Value

A String containing a product name code for the provided Add-In, such as MYADDIN. This will be shown in plain text
in any keys added to the keystore.

Notes

Shared Add-In keys have the format:

 EASK-YOURCODE-REALKEY

EASK - Constant string that identifies a shared key for an Enterprise Architect Add-In·
YOURCODE - The code you select and verify with us:·
 - Displayed to the administrator of the keystore
 - Recommended length of 6-10 characters
 - Contains ASCII characters 33-126, except for '-' (45)

REALKEY - Encoding of the actual key or checksums·
 - Recommended length of 8-32 characters
 - Contains ASCII characters 33-126

We recommend that you contact Sparx Systems directly with proposed values to ensure that you don't clash with any
other Add-Ins.

For example, these keys would all be interpreted as belonging to an Add-In returning MYADDIN from this function:

EASK-MYADDIN-Test·
EASK-MYADDIN-{7AC4D426-9083-4fa2-93B7-25E2B7FB8DC5}·
EASK-MYADDIN-7AC4D426-9083-4fa2-93B7·
EASK-MYADDIN-25E2B7FB8DC5·
EASK-MYADDIN-2hDfHKA5jf0GAjn92UvqAnxwC13dxQGJtH7zLHJ9Ym8=·

(c) Sparx Systems 2022 Page 39 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

(c) Sparx Systems 2022 Page 40 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Custom Table Events

The Custom Table element has an Operation called 'script', reserved for script execution, that can be used in two
different, mutually exclusive ways, either:

To contain a script in JavaScript that can be executed from the element context menu; see the Custom Table Artifact·
Help topic, or

To contain RaiseEvent broadcast calls to trigger actions from an Add-In written to read or update the Custom Table·

Broadcasts

There are four reserved Add-In broadcast events that can only be enabled by listing the event in the 'script' Operation of
the Custom Table element. To raise the broadcast events, list any or all of these broadcast calls in the operation named
'script'.

Syntax:

RaiseEvent::EA_OnCustomTableBeginEdit

(c) Sparx Systems 2022 Page 41 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnCustomTableBeginEdit

EA_OnCustomTableBeginEdit notifies Add-Ins that the Custom Table is beginning edit mode. This broadcast event can
only be enabled by the Custom Table's operation 'script' behavior.

Syntax

Function EA_OnCustomTableBeginEdit (Repository As EA.Repository, Info As EA.EventProperties)

The EA_OnCustomTableBeginEdit function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains this EventProperty object for the Custom Table that is under
edit:

ObjectID - A long value corresponding to the ElementID of the object·

(c) Sparx Systems 2022 Page 42 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnCustomTableEndEdit

EA_OnCustomTableEndEdit notifies Add-Ins that a Custom Table element is ending edit mode. This broadcast event
can only be enabled by the Custom Table's operation 'script' behavior.

Syntax

Function EA_OnCustomTableEndEdit (Repository As EA.Repository, Info As EA.EventProperties)

The EA_OnCustomTableEndEdit function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains this EventProperty object for the Custom Table that is under
edit:

ObjectID - A long value corresponding to the ElementID of the object·

Return Value

This function allows validation of the table data, and returns a Boolean value:

True to save the current data in the grid, or·
False to abandon the current data·

(c) Sparx Systems 2022 Page 43 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnCustomTableSelectionChanged

EA_OnCustomTableSelectionChanged notifies Add-Ins that a cell of the Custom Table has changed. This broadcast
event can only be enabled by the Custom Table's operation 'script' behavior.

Syntax

Function EA_OnCustomTableSelectionChanged (Repository As EA.Repository, Info As EA.EventProperties)

The EA_OnCustomTableSelectionChanged function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains these EventProperty objects for the Custom Table that has
been changed:

ObjectID - A long value corresponding to the ElementID of the object·
RowID - A long value corresponding to the selected row id·
ColID - A long value corresponding to the selected column id·

(c) Sparx Systems 2022 Page 44 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnCustomTableCellUpdated

EA_OnCustomTableCellUpdated notifies Add-Ins that a cell value has been updated. This broadcast event can only be
enabled by the Custom Table's operation 'script' behavior.

Syntax

Function EA_OnCustomTableCellUpdated (Repository As EA.Repository, Info As EA.EventProperties)

The EA_OnCustomTableCellUpdated function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains these EventProperty objects for the Custom Table cell that
has been changed:

ObjectID - A long value corresponding to the ElementID of the object·
RowID - A long value corresponding to the selected row id·
ColID - A long value corresponding to the selected column id·
Value - A variant value of the changed cell data·

(c) Sparx Systems 2022 Page 45 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Schema Composer Events

Enterprise Architect Add-Ins can respond to events associated with the Schema Composer to provide custom schema
export formats.

The requirements for an Add-In to participate consist of implementing these three functions:

EA_IsSchemaExporter·
EA_GetProfileInfo·
EA_GenerateFromSchema·

(c) Sparx Systems 2022 Page 46 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_GenerateFromSchema

Respond to a 'Generate' request from the Schema Composer when using the profile type specified by the
EA_IsSchemaExporter event. The SchemaComposer object can be used to traverse the schema. Export formats that have
been requested by the user for generation will be listed in the exports parameter.

Syntax

Sub EA_GenerateFromSchema (Repository as EA.Repository, composer as EA.SchemaComposer, exports as String)

Parameter Details

Repository Type: EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open model. Poll
its members to retrieve model data and user interface status information.

composer Type: EA.SchemaComposer

Direction: IN

Description: Provides access to the types defined in the schema currently being
generated. Use the SchemaTypes attribute to enumerate through the types and
output to the appropriate export format.

exports Type: String

Direction: IN

Description: Comma-separated list of export formats that the user has requested in
the 'Generate' dialog.

Return Value

None.

(c) Sparx Systems 2022 Page 47 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_GetProfileInfo

Add-Ins can optionally implement this function to define the capabilities of the Schema Composer when working with
the profile type specified by the EA_IsSchemaExporter event.

Syntax

Sub EA_GetProfileInfo (Repository as EA.Repository, profile as EA.SchemaProfile)

Parameter Details

Repository Type: EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open model. Poll
its members to retrieve model data and user interface status information.

profile Type: EA.SchemaProfile

Direction: IN

Description: An EA.SchemaProfile object representing the currently active profile
type. Call the SetCapability function to enable or disable various capabilities of the
Schema Composer. Call the AddExportFormat function to define additional export
formats that this profile will support.

Return Value

None.

(c) Sparx Systems 2022 Page 48 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_IsSchemaExporter

Enterprise Architect Add-Ins can integrate with the Schema Composer by providing alternatives to offer users for the
generation of schemas and sub models.

The Add-In must implement this function to be listed in the Schema Composer.

Syntax

Function EA_IsSchemaExporter(Repository as EA.Repository, ByRef displayName as String) As Boolean

Parameter Details

Repository Type: EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open model. Poll
its members to retrieve model data and user interface status information.

displayName Type: String

Direction: OUT

Description: The name of the custom schema set that will be provided by this
Add-In.

Return Value

Return True to indicate that this Add-In will provide schema export functionality and be listed as a Schema Set when
defining a new profile in the Schema Composer.

(c) Sparx Systems 2022 Page 49 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Compartment Events

Enterprise Architect Add-Ins can respond to various events associated with user-generated element compartments.

Compartment Broadcast Events

Event

EA_QueryAvailableCompartments

EA_GetCompartmentData

(c) Sparx Systems 2022 Page 50 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_QueryAvailableCompartments

This event occurs when Enterprise Architect's diagrams are refreshed. It is a request for the Add-In to provide a list of
user-defined compartments.

The EA_GetCompartmentData event then queries each object for the data to display in each user-defined compartment.

Syntax

Function EA_QueryAvailableCompartments (Repository As EA.Repository) As Variant

The EA_QueryAvailableCompartments function syntax contains this parameter.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Return Value

A String containing a comma-separated list of user-defined compartments.

Example

Function EA_QueryAvailableCompartments(Repository As EA.Repository) As Variant

 Dim sReturn As String

 sReturn = ""

 If m_FirstCompartmentVisible = True Then

 sReturn = sReturn + "first,"

 End If

 If m_SecondCompartmentVisible = True Then

 sReturn = sReturn + "second,"

 End If

 If m_ThirdCompartmentVisible = True Then

 sReturn = sReturn + "third,"

 End If

 If Len(sReturn) > 0 Then

 sReturn = Left(sReturn, Len(sReturn)-1)

 End If

 EA_QueryAvailableCompartments = sReturn

End Function

(c) Sparx Systems 2022 Page 51 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

(c) Sparx Systems 2022 Page 52 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_GetCompartmentData

This event occurs when Enterprise Architect is instructed to redraw an element. It requests that the Add-In provide the
data to populate the element's compartment.

Syntax

Function EA_GetCompartmentData (Repository As EA.Repository, sCompartment As String, sGUID As String, oType
As EA.ObjectType) As Variant

The EA_QueryAvailableCompartments function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

sCompartment String

Direction: IN

Description: The name of the compartment for which data is being requested.

sGUID String

Direction: IN

Description: The GUID of the element for which data is being requested.

oType ObjectType

Direction: IN

Description: The type of the element for which data is being requested.

Return Value

A variant containing a formatted string. The format is illustrated in this example:

Example

 Function EA_GetCompartmentData(Repository As EA.Repository, sCompartment As String, sGUID As String,
oType As EA.ObjectType) As Variant

 If Repository Is Nothing Then

 Exit Function

 End If

(c) Sparx Systems 2022 Page 53 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

 Dim sCompartmentData As String

 Dim oXML As MSXML2.DOMDocument

 Dim Nodes As MSXML2.IXMLDOMNodeList

 Dim Node1 As MSXML2.IXMLDOMNode

 Dim Node As MSXML2.IXMLDOMNode

 Dim sData As String

 sCompartmentData = ""

 Set oXML = New MSXML2.DOMDocument

 sData = ""

 On Error GoTo ERR_GetCompartmentData

 oXML.loadXML (Repository.GetTreeXMLByGUID(sGUID))

 Set Node1 = oXML.selectSingleNode("//ModelItem")

 If Node1 Is Nothing Then

 Exit Function

 End If

 sCompartmentData = sCompartmentData + "Name=" + sCompartment + ";"

 sCompartmentData = sCompartmentData + "OwnerGUID=" + sGUID + ";"

 sCompartmentData = sCompartmentData + "Options=SkipIfOnDiagram&_eq_^1&_sc_^"

 Select Case sCompartment

 Case "parts"

 Set Nodes = Node1.selectNodes("ModelItem(@Metatype=""Part"")")

 For Each Node In Nodes

 sData = sData + "Data&_eq_^" + Node.Attributes.getNamedItem("Name").nodeValue + "&_sc_^"

 sData = sData + "GUID&_eq_^" + Node.Attributes.getNamedItem("GUID").nodeValue + "&_sc_^,"

 Next

 Case "ports"

 Set Nodes = Node1.selectNodes("ModelItem(@Metatype=""Port"")")

 For Each Node In Nodes

 sData = sData + "Data&_eq_^" + Node.Attributes.getNamedItem("Name").nodeValue + "&_sc_^"

 sData = sData + "GUID&_eq_^" + Node.Attributes.getNamedItem("GUID").nodeValue + "&_sc_^,"

 Next

 End Select

 If there is no data to display, then don't return any compartment data

 If sData <> "" Then

 sCompartmentData = sCompartmentData + "CompartmentData=" + sData + ";"

 Else

 sCompartmentData = ""

 End If

 EA_GetCompartmentData = sCompartmentData

 Exit Function

(c) Sparx Systems 2022 Page 54 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

 ERR_GetCompartmentData:

 EA_GetCompartmentData = ""

 End Function

(c) Sparx Systems 2022 Page 55 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Context Item Events

Enterprise Architect Add-Ins can respond to events associated with changing context.

Context Item Broadcast Events

Event

EA_OnContextItemChanged

EA_OnContextItemDoubleClicked

EA_OnNotifyContextItemModified

(c) Sparx Systems 2022 Page 56 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnContextItemChanged

EA_OnContextItemChanged notifies Add-Ins that a different item is now in context.

This event occurs after a user has selected an item anywhere in the Enterprise Architect GUI. Add-Ins that require
knowledge of the current item in context can subscribe to this broadcast function. If ot = otRepository, then this function
behaves in the same way as EA_FileOpen.

Syntax

Sub EA_OnContextItemChanged (Repository As EA.Repository, GUID As String, ot as EA.ObjectType)

The EA_OnContextItemChanged function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

GUID String

Direction: IN

Description: Contains the GUID of the new context item. The value corresponds to
these properties, depending on the value of the ot parameter:

ot (ObjectType) - GUID value·
otElement - Element.ElementGUID·
otPackage - Package.PackageGUID·
otDiagram - Diagram.DiagramGUID·
otAttribute - Attribute.AttributeGUID·
otMethod - Method.MethodGUID·
otConnector - Connector.ConnectorGUID·
otRepository - NOT APPLICABLE, the GUID is an empty string·

ot EA.ObjectType

Direction: IN

Description: Specifies the type of the new context item.

Return Value

None.

(c) Sparx Systems 2022 Page 57 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnContextItemDoubleClicked

EA_OnContextItemDoubleClicked notifies Add-Ins that the user has double-clicked the item currently in context.

This event occurs when a user has double-clicked (or pressed the Enter key) on the item in context, either in a diagram,
in the Browser window or in a custom compartment. Add-Ins to handle events can subscribe to this broadcast function.

Syntax

Function EA_OnContextItemDoubleClicked (Repository As EA.Repository, GUID As String, ot as EA.ObjectType)

The EA_OnContextItemDoubleClicked function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

GUID String

Direction: IN

Description: Contains the GUID of the new context item. The value corresponds to
these properties, depending on the value of the ot parameter:

otElement - Element.ElementGUID·
otPackage - Package.PackageGUID·
otDiagram - Diagram.DiagramGUID·
otAttribute - Attribute.AttributeGUID·
otMethod - Method.MethodGUID·
otConnector - Connector.ConnectorGUID·

ot EA.ObjectType

Direction: IN

Description: Specifies the type of the new context item.

Return Value

Return True to notify Enterprise Architect that the double-click event has been handled by an Add-In·
Return False to enable Enterprise Architect to continue processing the event·

(c) Sparx Systems 2022 Page 58 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnNotifyContextItemModified

EA_OnNotifyContextItemModified notifies Add-Ins that the current context item has been modified.

This event occurs when a user has modified the context item. Add-Ins that require knowledge of when an item has been
modified can subscribe to this broadcast function.

Syntax

Sub EA_OnNotifyContextItemModified (Repository As EA.Repository, GUID As String, ot as EA.ObjectType)

The EA_OnNotifyContextItemModified function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

GUID String

Direction: IN

Description: Contains the GUID of the new context item. The value corresponds to
these properties, depending on the value of the ot parameter:

ot(ObjectType) - GUID value·
otElement - Element.ElementGUID·
otPackage - Package.PackageGUID·
otDiagram - Diagram.DiagramGUID·
otAttribute - Attribute.AttributeGUID·
otMethod - Method.MethodGUID·
otConnector - Connector.ConnectorGUID·

ot EA.ObjectType

Direction: IN

Description: Specifies the type of the new context item.

Return Value

None.

(c) Sparx Systems 2022 Page 59 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_FileClose

The EA_FileClose event enables the Add-In to respond to a File Close event. When Enterprise Architect closes an
opened Model file, this event is raised and passed to all Add-Ins implementing this method.

This event occurs when the model currently opened within Enterprise Architect is about to be closed (when another
model is about to be opened or when Enterprise Architect is about to shutdown).

Syntax

Sub EA_FileClose (Repository As EA.Repository)

The EA_FileClose function syntax contains this parameter:

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the Enterprise Architect model
about to be closed. Poll its members to retrieve model data and user interface status
information.

Return Value

None.

(c) Sparx Systems 2022 Page 60 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_FileNew

The EA_FileNew event enables the Add-In to respond to a File New event. When Enterprise Architect creates a new
model file, this event is raised and passed to all Add-Ins implementing this method.

The event occurs when the model being viewed by the Enterprise Architect user changes, for whatever reason (through
user interaction or Add-In activity).

Syntax

Sub EA_FileNew (Repository As EA.Repository)

The EA_FileNew function syntax contains this parameter.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Return Value

None.

(c) Sparx Systems 2022 Page 61 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_FileOpen

The EA_FileOpen event enables the Add-In to respond to a File Open event. When Enterprise Architect opens a new
model file, this event is raised and passed to all Add-Ins implementing this method.

The event occurs when the model being viewed by the Enterprise Architect user changes, for whatever reason (through
user interaction or Add-In activity).

Syntax

Sub EA_FileOpen (Repository As EA.Repository)

The EA_FileOpen function syntax contains this parameter.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Return Value

None.

(c) Sparx Systems 2022 Page 62 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPostCloseDiagram

EA_OnPostCloseDiagram notifies Add-Ins that a diagram has been closed.

Syntax

Function EA_OnPostCloseDiagram (Repository As EA.Repository, DiagramID As Integer)

The EA_OnPostCloseDiagram function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the Enterprise Architect model
about to be closed. Poll its members to retrieve model data and user interface status
information.

DiagramID Integer

Direction: IN

Description: Contains the Diagram ID of the diagram that was closed.

Return Value

None.

(c) Sparx Systems 2022 Page 63 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPostInitialized

EA_OnPostInitialized notifies Add-Ins that the Repository object has finished loading and any necessary initialization
steps can now be performed on the object.

For example, the Add-In can create an 'Output' tab using Repository.CreateOutputTab.

Syntax

Sub EA_OnPostInitialized (Repository As EA.Repository)

The EA_OnPostInitialized function syntax contains this parameter.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Return Value

None.

(c) Sparx Systems 2022 Page 64 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPostOpenDiagram

EA_OnPostOpenDiagram notifies Add-Ins that a diagram has been opened.

Syntax

Function EA_OnPostOpenDiagram (Repository As EA.Repository, DiagramID As Integer)

The EA_OnPostOpenDiagram function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

DiagramID Integer

Direction: IN

Description: Contains the Diagram ID of the diagram that was opened.

Return Value

None.

(c) Sparx Systems 2022 Page 65 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPostTransform

EA_OnPostTransform notifies Add-Ins that an MDG transformation has taken place with the output in the specified
target Package.

This event occurs when a user runs an MDG transform on one or more target Packages; the notification is provided for
each transform/target Package immediately after all transform processes have completed.

Syntax

Function EA_OnPostTransform (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostTransform function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains these EventProperty Objects for the transform performed:

Transform: A string value corresponding to the name of the transform used·
PackageID: A long value corresponding to Package.PackageID of the·
destination Package

Return Value

Reserved for future use.

(c) Sparx Systems 2022 Page 66 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPreExitInstance

EA_OnPreExitInstance is not currently used.

Syntax

Sub EA_OnPreExitInstance (Repository As EA.Repository)

The EA_OnPreExitInstance function syntax contains this parameter.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Return Value

None.

(c) Sparx Systems 2022 Page 67 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnRetrieveModelTemplate

EA_OnRetrieveModelTemplate requests that an Add-In pass a model template to Enterprise Architect. This event occurs
when a user executes the 'Add a New Model Using Wizard' command to add a model that has been defined by an MDG
Technology.

Syntax

Function EA_OnRetrieveModelTemplate (Repository As EA.Repository, sLocation As String) As String

The EA_OnRetrieveModelTemplate function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

sLocation String

Direction: IN

Description: The name of the template requested; this should match the location
attribute in the <ModelTemplates> section of an MDG Technology File.

Return Value

Return a string containing the XMI export of the model that is being used as a template.

Return an empty string if access to the template is denied; the Add-In is to handle user notification of the error.

Example

Public Function EA_OnRetrieveModelTemplate(ByRef Rep As EA.Repository, ByRef sLocation As String) As String

Dim sTemplate As String

Select Case sLocation

Case "Templates\Template1.xml"

sTemplate = My.Resources.Template1

Case "Templates\Template2.xml"

sTemplate = My.Resources.Template2

Case "Templates\Template3.xml"

sTemplate = My.Resources.Template3

Case Else

MsgBox("Path for " & sLocation & " not found")

sTemplate = ""

(c) Sparx Systems 2022 Page 68 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

End Select

EA_OnRetrieveModelTemplate = sTemplate

End Function

(c) Sparx Systems 2022 Page 69 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnTabChanged

EA_OnTabChanged notifies Add-Ins that the currently open tab has changed.

Diagrams do not generate the message when they are first opened - use the broadcast event EA_OnPostOpenDiagram for
this purpose.

Syntax

Function EA_OnTabChanged (Repository As EA.Repository, TabName As String, DiagramID As Integer)

The EA_OnTabChanges function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

TabName String

Direction: IN

Description: The name of the tab to which focus has been switched.

DiagramID Long

Direction: IN

Description: The diagram ID, or 0 if switched to an Add-In tab.

Return Value

None

(c) Sparx Systems 2022 Page 70 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_LoadWindowManager

Enterprise Architect provides a set of Portals, each of which is a collection of shortcuts and information on performing
specific areas of work on a project. The Portals help both new and experienced users quickly identify and set up the
facilities they most often use in their assigned tasks.

You can add your own Portal to the system-installed set, to provide a convenient and concise call-up of one or more
groups of facilities available in your Add-In.

Syntax

Function EA_Connect (Repository As EA.Repository) As String

The EA_Connect function syntax has this parameter:

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Example Code

 public String EA_LoadWindowManager(EA.Repository Repository)

 {

 return Resource1.WindowManager;

 }

Where Resource1.WindowManager is a resource file with these contents:

 <?xml version="1.0" encoding="UTF-8"?>

 <perspectives>

 <perspective name="Add-In">

 <category name="Add-In" type="commandlist" projectrequired="true">

 <item name="Hello World" command="CallAddin" addin="CS_AddinFramework" function="HelloWorld"/>

 <item name="Model Dump" command="CallScript" group="Local Scripts" script="JScript - Recursive Model Dump
Example"/>

 </category>

 <category name="Open Diagrams" type="currentdiagramlist" state = "open"/>

 <category name="Recent Diagrams" type="recentdiagramlist" state = "open"/>

 <category name="Other Windows" type="otherwindowlist" state = "open"/>

 </perspective>

 </perspectives>

Note that the Add-In cannot specify the icon used.

(c) Sparx Systems 2022 Page 71 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Model Validation Events

Perform Model Validation from an Add-In

Using Enterprise Architect broadcasts, it is possible to define a set of rules that are evaluated when the user instructs
Enterprise Architect to perform model validation. An Add-In that performs model validation would involve these
broadcast events.

Command Detail

EA_OnInitializeUserRules EA_OnInitializeUserRules is intercepted in order to define rule categories and
rules.

EA_OnStartValidation EA_OnStartValidation can be intercepted to perform any required processing prior
to validation.

EA_OnEndValidation EA_OnEndValidation can be intercepted to perform any required clean-up after
validation has completed.

Validate Request These functions intercept each request to validate an individual element, Package,
diagram, connector, attribute and method.

Validate Element EA_OnRunElementRule

Validate Package EA_OnRunPackageRule

Validate Diagram EA_OnRunDiagramRule

Validate Connector EA_OnRunConnectorRule

Validate Attribute EA_OnRunAttributeRule

Validate Method EA_OnRunMethodRule

Validate Parameter EA_OnRunParameterRule

(c) Sparx Systems 2022 Page 72 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnInitializeUserRules

EA_OnInitializeUserRules is called on Enterprise Architect start-up and requests that the Add-In provide Enterprise
Architect with a rule category and list of rule IDs for model validation.

This function must be implemented by any Add-In that is to perform its own model validation. It must call
Project.DefineRuleCategory once and Project.DefineRule for each rule; these functions are described in the Project
Interface topic.

Syntax

Sub EA_OnInitializeUserRules (Repository As EA.Repository)

The EA_OnInitializeUserRules function syntax contains this parameter.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

(c) Sparx Systems 2022 Page 73 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnStartValidation

EA_OnStartValidation notifies Add-Ins that a user has invoked the model validation command from Enterprise
Architect.

Syntax

Sub EA_OnStartValidation (Repository As EA.Repository, ParamArray Args() as Variant)

The EA_OnStartValidation function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Args ParamArray of Variant

Direction: IN

Description: Contains a list of Rule Categories that are active for the current
invocation of model validation.

(c) Sparx Systems 2022 Page 74 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnEndValidation

EA_OnEndValidation notifies Add-Ins that model validation has completed.

Use this event to arrange any clean-up operations arising from the validation.

Syntax

Sub EA_OnEndValidation (Repository As EA.Repository, ParamArray Args() as Variant)

The EA_OnEndValidation function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Args ParamArray of Variant

Direction: IN

Description: Contains a list of Rule Categories that were active for the invocation
of model validation that has just completed.

(c) Sparx Systems 2022 Page 75 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnRunElementRule

This event is triggered once for each rule defined in EA_OnInitializeUserRules to be performed on each element in the
selection being validated.

If you don't want to perform the rule defined by RuleID on the given element, then simply return without performing any
action.

On performing any validation, if a validation error is found, use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunElementRule (Repository As EA.Repository, RuleID As String, Element As EA.Element)

The EA_OnRunElementRule function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

RuleID String

Direction: IN

Description: The ID that was passed into the 'Project.DefineRule' command.

Element EA.Element

Direction: IN

Description: The element to potentially perform validation on.

(c) Sparx Systems 2022 Page 76 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnRunPackageRule

This event is triggered once for each rule defined in EA_OnInitializeUserRules to be performed on each Package in the
selection being validated.

If you don't want to perform the rule defined by RuleID on the given Package, then simply return without performing any
action.

On performing any validation, if a validation error is found, use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunPackageRule (Repository As EA.Repository, RuleID As String, PackageID As Long)

The EA_OnRunElementRule function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

RuleID String

Direction: IN

Description: The ID that was passed into the 'Project.DefineRule' method.

PackageID Long

Direction: IN

Description: The ID of the Package to potentially perform validation on. Use the
'Repository.GetPackageByID' method to retrieve the Package object.

(c) Sparx Systems 2022 Page 77 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnRunDiagramRule

This event is triggered once for each rule defined in EA_OnInitializeUserRules to be performed on each diagram in the
selection being validated.

If you don't want to perform the rule defined by RuleID on the given diagram, then simply return without performing any
action.

On performing any validation, if a validation error is found, use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunDiagramRule (Repository As EA.Repository, RuleID As String, DiagramID As Long)

The EA_OnRunDiagramRule function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

RuleID String

Direction: IN

Description: The ID that was passed into the 'Project.DefineRule' command.

DiagramID Long

Direction: IN

Description: The ID of the diagram to potentially perform validation on.

Use the Repository.GetDiagramByID method to retrieve the diagram object.

(c) Sparx Systems 2022 Page 78 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnRunConnectorRule

This event is triggered once for each rule defined in EA_OnInitializeUserRules to be performed on each connector in the
selection being validated.

If you don't want to perform the rule defined by RuleID on the given connector, then simply return without performing
any action.

On performing any validation, if a validation error is found, use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunConnectorRule (Repository As EA.Repository, RuleID As String, ConnectorID As Long)

The EA_OnRunConnectorRule function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

RuleID String

Direction: IN

Description: The ID that was passed into the 'Project.DefineRule' command.

ConnectorID Long

Direction: IN

Description: The ID of the connector to potentially perform validation on.

Use the 'Repository.GetConnectorByID' method to retrieve the connector object.

(c) Sparx Systems 2022 Page 79 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnRunAttributeRule

This event is triggered once for each rule defined in EA_OnInitializeUserRules to be performed on each attribute in the
selection being validated.

If you don't want to perform the rule defined by RuleID on the given attribute, then simply return without performing any
action.

On performing any validation, if a validation error is found, use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunAttributeRule (Repository As EA.Repository, RuleID As String, AttributeGUID As String, ObjectID As
Long)

The EA_OnRunAttributeRule function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

RuleID String

Direction: IN

Description: The ID that was passed into the 'Project.DefineRule' command.

AttributeGUID String

Direction: IN

Description: The GUID of the attribute to potentially perform validation on.

Use the 'Repository.GetAttributeByGuid' method to retrieve the attribute object.

ObjectID Long

Direction: IN

Description: The ID of the object that owns the given attribute. Use the
'Repository.GetElementByID' method to retrieve the object.

(c) Sparx Systems 2022 Page 80 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnRunMethodRule

This event is triggered once for each rule defined in EA_OnInitializeUserRules to be performed on each method in the
selection being validated.

If you don't want to perform the rule defined by RuleID on the given method, then simply return without performing any
action.

On performing any validation, if a validation error is found, use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunMethodRule (Repository As EA.Repository, RuleID As String, MethodGUID As String, ObjectID As
Long)

The EA_OnRunMethodRule function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

RuleID String

Direction: IN

Description: The ID that was passed into the 'Project.DefineRule' command.

MethodGUID String

Direction: IN

Description: The GUID of the method to potentially perform validation on. Use the
'Repository.GetMethodByGuid' method to retrieve the method object.

ObjectID Long

Direction: IN

Description: The ID of the object that owns the given method. Use the
'Repository.GetElementByID' method to retrieve the object.

(c) Sparx Systems 2022 Page 81 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnRunParameterRule

This event is triggered once for each rule defined in EA_OnInitializeUserRules to be performed on each parameter in the
selection being validated.

If you don't want to perform the rule defined by RuleID on the given parameter, then simply return without performing
any action.

On performing any validation, if a validation error is found, use the Repository.ProjectInterface.PublishResult method to
notify Enterprise Architect.

Syntax

Sub EA_OnRunParameterRule (Repository As EA.Repository, RuleID As String, ParameterGUID As String,
MethodGUID As String, ObjectID As Long)

The EA_OnRunMethodRule function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

RuleID String

Direction: IN

Description: The ID that was passed into the 'Project.DefineRule' command.

ParameterGUID String

Direction: IN

Description: The GUID of the parameter to potentially perform validation on. Use
this to retrieve the parameter by iterating through the 'Method.Parameters'
collection.

MethodGUID String

Direction: IN

Description: The GUID of the method that owns the given parameter. Use the
'Repository.GetMethodByGuid' method to retrieve the method object.

ObjectID Long

Direction: IN

Description: The ID of the object that owns the given parameter. Use the
'Repository.GetElementByID' method to retrieve the object.

(c) Sparx Systems 2022 Page 82 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Model Validation Example

This example code is written in C# and provides a skeleton model validation implementation that you might want to use
as a starting point in writing your own model validation rules.

Main.cs

using System;

namespace myAddin

{

 public class Main

 {

 public Rules theRules;

 public Main()

 {

 theRules = new Rules();

 }

 public string EA_Connect(EA.Repository Repository)

 {

 return "";

 }

 public void EA_Disconnect()

 {

 GC.Collect();

 GC.WaitForPendingFinalizers();

 }

 private bool IsProjectOpen(EA.Repository Repository)

 {

 try

 {

 EA.Collection c = Repository.Models;

 return true;

 }

 catch

 {

 return false;

 }

 }

 public object EA_GetMenuItems(EA.Repository Repository, string MenuLocation, string MenuName)

 {

 switch (MenuName)

 {

(c) Sparx Systems 2022 Page 83 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

 case "":

 return "-&myAddin";

 case "-&myAddin":

 string() ar = { "&Test" };

 return ar;

 }

 return "";

 }

 public void EA_GetMenuState(EA.Repository Repository, string MenuLocation, string MenuName,

 string ItemName, ref bool IsEnabled, ref bool IsChecked)

 {

 // if no open project, disable all menu options

 if (IsProjectOpen(Repository))

 IsEnabled = true;

 else

 IsEnabled = false;

 }

 public void EA_MenuClick(EA.Repository Repository, string MenuLocation, string MenuName, string
ItemName)

 {

 switch (ItemName)

 {

 case "&Test";

 DoTest(Repository);

 break;

 }

 }

 public void EA_OnInitializeUserRules(EA.Repository Repository)

 {

 if (Repository != null)

 {

 theRules.ConfigureCategories(Repository);

 theRules.ConfigureRules(Repository);

 }

 }

 public void EA_OnRunElementRule(EA.Repository Repository, string RuleID, EA.Element element)

 {

 theRules.RunElementRule(Repository, RuleID, element);

 }

 public void EA_OnRunDiagramRule(EA.Repository Repository, string RuleID, long lDiagramID)

 {

 theRules.RunDiagramRule(Repository, RuleID, lDiagramID);

(c) Sparx Systems 2022 Page 84 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

 }

 public void EA_OnRunConnectorRule(EA.Repository Repository, string RuleID, long lConnectorID)

 {

 theRules.RunConnectorRule(Repository, RuleID, lConnectorID);

 }

 public void EA_OnRunAttributeRule(EA.Repository Repository, string RuleID, string AttGUID, long lObjectID)

 {

 return;

 }

 public void EA_OnDeleteTechnology(EA.Repository Repository, EA.EventProperties Info)

 {

 return;

 }

 public void EA_OnImportTechnology(EA.Repository Repository, EA.EventProperties Info)

 {

 return;

 }

 private void DoTest(EA.Repository Rep)

 {

 // TODO: insert test code here

 }

 }

}

Rules.cs

using System;

using System.Collections;

namespace myAddin

{

 public class Rules

 {

 private string m_sCategoryID;

 private System.Collections.ArrayList m_RuleIDs;

 private System.Collections.ArrayList m_RuleIDEx;

 private const string cRule01 = "Rule01";

 private const string cRule02 = "Rule02";

 private const string cRule03 = "Rule03";

 // TODO: expand this list as much as necessary

 public Rules()

 {

 m_RuleIDs = new System.Collections.ArrayList();

(c) Sparx Systems 2022 Page 85 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

 m_RuleIDEx = new System.Collections.ArrayList();

 }

 private string LookupMap(string sKey)

 {

 return DoLookupMap(sKey, m_RuleIDs, m_RuleIDEx);

 }

 private string LookupMapEx(string sRule)

 {

 return DoLookupMap(sRule, m_RuleIDEx, m_RuleIDs);

 }

 private string DoLookupMap(string sKey, ArrayList arrValues, ArrayList arrKeys)

 {

 if (arrKeys.Contains(sKey))

 return arrValues(arrKeys.IndexOf(sKey)).ToString();

 else

 return "";

 }

 private void AddToMap(string sRuleID, string sKey)

 {

 m_RuleIDs.Add(sRuleID);

 m_RuleIDEx.Add(sKey);

 }

 private string GetRuleStr(string sRuleID)

 {

 switch (sRuleID)

 {

 case cRule01:

 return "Error Message 01";

 case cRule02:

 return "Error Message 02";

 case cRule03:

 return "Error Message 03";

 // TODO: add extra cases as much as necessary

 }

 return "";

 }

 public void ConfigureCategories(EA.Repository Repository)

 {

 EA.Project Project = Repository.GetProjectInterface();

 m_sCategoryID = Project.DefineRuleCategory("Enterprise Collaboration Architecture (ECA) Rules");

 }

 public void ConfigureRules(EA.Repository Repository)

(c) Sparx Systems 2022 Page 86 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

 {

 EA.Project Project = Repository.GetProjectInterface();

 AddToMap(Project.DefineRule(m_sCategoryID, EA.EnumMVErrorType.mvError, GetRuleStr(cRule01)),
cRule01);

 AddToMap(Project.DefineRule(m_sCategoryID, EA.EnumMVErrorType.mvError, GetRuleStr(cRule02)),
cRule02);

 AddToMap(Project.DefineRule(m_sCategoryID, EA.EnumMVErrorType.mvError, GetRuleStr(cRule03)),
cRule03);

 // TODO: expand this list

 }

 public void RunConnectorRule(EA.Repository Repository, string sRuleID, long lConnectorID)

 {

 EA.Connector Connector = Repository.GetConnectorByID((int)lConnectorID);

 if (Connector != null)

 {

 switch (LookupMapEx(sRuleID))

 {

 case cRule02:

 // TODO: perform rule 2 check

 break;

 // TODO: add more cases

 }

 }

 }

 public void RunDiagramRule(EA.Repository Repository, string sRuleID, long lDiagramID)

 {

 EA.Diagram Diagram = Repository.GetDiagramByID((int)lDiagramID);

 if (Diagram != null)

 {

 switch (LookupMapEx(sRuleID))

 {

 case cRule03:

 // TODO: perform rule 3 check

 break;

 // TODO: add more cases

 }

 }

 }

 public void RunElementRule(EA.Repository Repository, string sRuleID, EA.Element Element)

 {

 if (Element != null)

 {

 switch (LookupMapEx(sRuleID))

(c) Sparx Systems 2022 Page 87 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

 {

 case cRule01:

 DoRule01(Repository, Element);

 break;

 // TODO: add more cases

 }

 }

 }

 private void DoRule01(EA.Repository Repository, EA.Element Element)

 {

 if (Element.Stereotype != "myStereotype")

 return;

 // TODO: validation logic here

 // report validation errors

 EA.Project Project = Repository.GetProjectInterface();

 Project.PublishResult(LookupMap(cRule01), EA.EnumMVErrorType.mvError, GetRuleStr(cRule01));

 }

 }

}

(c) Sparx Systems 2022 Page 88 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Post-New Events

Enterprise Architect Add-Ins can respond to the creation of new elements, connectors, objects, attributes, methods and
Packages using these broadcast events:

Post-New Broadcast Events

Event

EA_OnPostNewElement

EA_OnPostNewConnector

EA_OnPostNewDiagram

EA_OnPostNewDiagramObject

EA_OnPostNewAttribute

EA_OnPostNewMethod

EA_OnPostNewPackage

EA_OnPostNewGlossaryTerm

(c) Sparx Systems 2022 Page 89 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPostNewElement

EA_OnPostNewElement notifies Add-Ins that a new element has been created on a diagram. It enables Add-Ins to
modify the element upon creation.

This event occurs after a user has dragged a new element from the Toolbox or 'Resources' tab of the Browser window
onto a diagram. The notification is provided immediately after the element is added to the model.

Set Repository.SuppressEADialogs to True to suppress Enterprise Architect from showing its default 'Properties' dialog.

Syntax

Function EA_OnPostNewElement (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewElement function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains this EventProperty object for the new element:

ElementID: A long value corresponding to Element.ElementID·

Return Value

Return True if the element has been updated during this notification. Return False otherwise.

(c) Sparx Systems 2022 Page 90 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPostNewConnector

EA_OnPostNewConnector notifies Add-Ins that a new connector has been created on a diagram. It enables Add-Ins to
modify the connector upon creation.

This event occurs after a user has dragged a new connector from the Toolbox or 'Resources' tab of the Browser window
onto a diagram. The notification is provided immediately after the connector is added to the model.

Syntax

Function EA_OnPostNewConnector (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewConnector function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains this EventProperty object for the new connector:

ConnectorID: A long value corresponding to Connector.ConnectorID·

Return Value

Return True if the connector has been updated during this notification. Return False otherwise.

(c) Sparx Systems 2022 Page 91 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPostNewDiagram

EA_OnPostNewDiagram notifies Add-Ins that a new diagram has been created. It enables Add-Ins to modify the
diagram upon creation.

Syntax

Function EA_OnPostNewDiagram (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewDiagram function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains this EventProperty object for the new diagram:

DiagramID: A long value corresponding to Diagram.PackageID·

Return Value

Return True if the diagram has been updated during this notification. Return False otherwise.

(c) Sparx Systems 2022 Page 92 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPostNewDiagramObject

EA_OnPostNewDiagramObject notifies Add-Ins that a new object has been created on a diagram. It enables Add-Ins to
modify the object upon creation.

This event occurs after a user has dragged a new object directly from the Browser window or from the 'Resources' tab of
the Browser window onto a diagram. The notification is provided immediately after the object is added to the diagram.

Syntax

Function EA_OnPostNewDiagramObject (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewDiagramObject function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains these EventProperty objects for the new element:

ID: A long value corresponding to the ElementID of the object that has been·
added to the diagram

DiagramID: A long value corresponding to the DiagramID of the diagram to·
which the object has been added

DUID: A string value for the DUID; can be used with·
Diagram.GetDiagramObjectByID to retrieve the new DiagramObject

Return Value

Return True if the element has been updated during this notification. Return False otherwise.

(c) Sparx Systems 2022 Page 93 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPostNewAttribute

EA_OnPostNewAttribute notifies Add-Ins that a new attribute has been created on a diagram. It enables Add-Ins to
modify the attribute upon creation.

This event occurs when a user creates a new attribute on an element by either drag-and-dropping from the Browser
window, using the 'Attributes' tab of the Features window, or using the in-place editor on the diagram. The notification is
provided immediately after the attribute is created.

Syntax

Function EA_OnPostNewAttribute (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewAttribute function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains this EventProperty object for the new attribute:

AttributeID: A long value corresponding to Attribute.AttributeID·

Return Value

Return True if the attribute has been updated during this notification. Return False otherwise.

(c) Sparx Systems 2022 Page 94 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPostNewMethod

EA_OnPostNewMethod notifies Add-Ins that a new method has been created on a diagram. It enables Add-Ins to modify
the method upon creation.

This event occurs when a user creates a new method on an element by either drag-dropping from the Browser window,
using the method's 'Properties' dialog, or using the in-place editor on the diagram. The notification is provided
immediately after the method is created.

Syntax

Function EA_OnPostNewMethod (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewMethod function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains this EventProperty object for the new method:

MethodID: A long value corresponding to Method.MethodID·

Return Value

Return True if the method has been updated during this notification. Return False otherwise.

(c) Sparx Systems 2022 Page 95 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPostNewPackage

EA_OnPostNewPackage notifies Add-Ins that a new Package has been created on a diagram. It enables Add-Ins to
modify the Package upon creation.

This event occurs when a user drags a new Package from the Toolbox or 'Resources' tab of the Browser window onto a
diagram, or by selecting the New Package icon from the Browser window.

Syntax

Function EA_OnPostNewPackage (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewPackage function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains this EventProperty object for the new Package:

PackageID: A long value corresponding to Package.PackageID·

Return Value

Return True if the Package has been updated during this notification. Return False otherwise.

(c) Sparx Systems 2022 Page 96 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPostNewGlossaryTerm

EA_OnPostNewGlossaryTerm notifies Add-Ins that a new glossary term has been created. It enables Add-Ins to modify
the glossary term upon creation.

The notification is provided immediately after the glossary term is added to the model.

Syntax

Function EA_OnPostNewGlossaryTerm (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPostNewGlossaryTerm function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains these EventProperty objects for the new glossary term:

TermID: A string value corresponding to Term.TermID·
Term: A string value corresponding to the name of the glossary term being·
created

Meaning: A string value corresponding to meaning of the glossary term being·
created

Return Value

Return True if the glossary term has been updated during this notification. Return False otherwise.

(c) Sparx Systems 2022 Page 97 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Pre-Deletion Events

Enterprise Architect Add-Ins can respond to requests to delete elements, attributes, methods, connectors, diagrams,
Packages and glossary terms using these broadcast events:

Pre-Deletion Broadcast Events

Event

EA_OnPreDeleteElement

EA_OnPreDeleteAttribute

EA_OnPreDeleteMethod

EA_OnPreDeleteConnector

EA_OnPreDeleteDiagram

EA_OnPreDeletePackage

EA_OnPreDeleteGlossaryTerm

EA_OnPreDeleteTechnology (Deprecated)

(c) Sparx Systems 2022 Page 98 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPreDeleteElement

EA_OnPreDeleteElement notifies Add-Ins that an element is to be deleted from the model. It enables Add-Ins to permit
or deny deletion of the element.

This event occurs when a user deletes an element from the Browser window or on a diagram. The notification is
provided immediately before the element is deleted, so that the Add-In can disable deletion of the element.

Syntax

Function EA_OnPreDeleteElement (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteElement function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains this EventProperty object for the element to be deleted:

ElementID: A long value corresponding to Element.ElementID·

Return Value

Return True to enable deletion of the element from the model·
Return False to disable deletion of the element·

(c) Sparx Systems 2022 Page 99 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPreDeleteAttribute

EA_OnPreDeleteAttribute notifies Add-Ins that an attribute is to be deleted from the model. It enables Add-Ins to permit
or deny deletion of the attribute.

This event occurs when a user attempts to permanently delete an attribute from the Browser window. The notification is
provided immediately before the attribute is deleted, so that the Add-In can disable deletion of the attribute.

Syntax

Function EA_OnPreDeleteAttribute (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteAttribute function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains this EventProperty object for the attribute to be deleted:

AttributeID: A long value corresponding to Attribute.AttributeID·

Return Value

Return True to enable deletion of the attribute from the model·
Return False to disable deletion of the attribute·

(c) Sparx Systems 2022 Page 100 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPreDeleteMethod

EA_OnPreDeleteMethod notifies Add-Ins that a method (operation) is to be deleted from the model. It enables Add-Ins
to permit or deny deletion of the method.

This event occurs when a user attempts to permanently delete a method from the Browser window. The notification is
provided immediately before the method is deleted, so that the Add-In can disable deletion of the method.

Syntax

Function EA_OnPreDeleteMethod (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteMethod function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains this EventProperty object for the method to be deleted:

MethodID: A long value corresponding to Method.MethodID·

Return Value

Return True to enable deletion of the method from the model·
Return False to disable deletion of the method·

(c) Sparx Systems 2022 Page 101 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPreDeleteConnector

EA_OnPreDeleteConnector notifies Add-Ins that a connector is to be deleted from the model. It enables Add-Ins to
permit or deny deletion of the connector.

This event occurs when a user attempts to permanently delete a connector on a diagram. The notification is provided
immediately before the connector is deleted, so that the Add-In can disable deletion of the connector.

Syntax

Function EA_OnPreDeleteConnector (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteConnector function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains this EventProperty object for the connector to be deleted:

ConnectorID: A long value corresponding to Connector.ConnectorID·

Return Value

Return True to enable deletion of the connector from the model·
Return False to disable deletion of the connector·

(c) Sparx Systems 2022 Page 102 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPreDeleteDiagram

EA_OnPreDeleteDiagram notifies Add-Ins that a diagram is to be deleted from the model. It enables Add-Ins to permit
or deny deletion of the diagram.

This event occurs when a user attempts to permanently delete a diagram from the Browser window. The notification is
provided immediately before the diagram is deleted, so that the Add-In can disable deletion of the diagram.

Syntax

Function EA_OnPreDeleteDiagram (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteDiagram function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains this EventProperty object for the diagram to be deleted:

DiagramID: A long value corresponding to Diagram.DiagramID·

Return Value

Return True to enable deletion of the diagram from the model·
Return False to disable deletion of the diagram·

(c) Sparx Systems 2022 Page 103 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPreDeleteDiagramObject

EA_OnPreDeleteDiagramObject notifies Add-Ins that a diagram object is to be deleted from the model. It enables
Add-Ins to permit or deny deletion of the element.

This event occurs when a user attempts to permanently delete an element from a diagram. The notification is provided
immediately before the element is deleted, so that the Add-In can disable deletion of the element.

Syntax

Function EA_OnPreDeleteDiagramObject (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteDiagramObject function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains this EventProperty object for the element to be deleted:

ID: A long value corresponding to DiagramObject.ElementID·

Return Value

Return True to enable deletion of the element from the model·
Return False to disable deletion of the element·

(c) Sparx Systems 2022 Page 104 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPreDeletePackage

EA_OnPreDeletePackage notifies Add-Ins that a Package is to be deleted from the model. It enables Add-Ins to permit
or deny deletion of the Package.

This event occurs when a user attempts to permanently delete a Package from the Browser window. The notification is
provided immediately before the Package is deleted, so that the Add-In can disable deletion of the Package.

Syntax

Function EA_OnPreDeletePackage (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeletePackage function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains this EventProperty object for the Package to be deleted:

PackageID: A long value corresponding to Package.PackageID·

Return Value

Return True to enable deletion of the Package from the model·
Return False to disable deletion of the Package·

(c) Sparx Systems 2022 Page 105 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPreDeleteGlossaryTerm

EA_OnPreDeleteGlossaryTerm notifies Add-Ins that a glossary term is to be deleted from the model. It enables Add-Ins
to permit or deny deletion of the glossary term.

The notification is provided immediately before the glossary term is deleted, so that the Add-In can disable deletion of
the glossary term.

Syntax

Function EA_OnPreDeleteGlossaryTerm (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteGlossaryTerm function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains this EventProperty object for the glossary term to be deleted:

TermID: A long value corresponding to Term.TermID·

Return Value

Return True to enable deletion of the glossary term from the model·
Return False to disable deletion of the glossary term·

(c) Sparx Systems 2022 Page 106 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Pre New-Object Events

When you create an Add-In, you can include broadcast events to intercept and respond to requests to create new objects,
including elements, connectors, diagram objects, attributes, methods and Packages.

Events to intercept

Event

Creation of a new element

Creation of a new connector

Creation of a new diagram

Creation of a new diagram object

Creation of a new element by dropping onto a diagram from the Browser window.

Creation of a new attribute

Creation of a new method

Creation of a new Package

Creation of a new glossary term

(c) Sparx Systems 2022 Page 107 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPreNewElement

EA_OnPreNewElement notifies Add-Ins that a new element is about to be created on a diagram. It enables Add-Ins to
permit or deny creation of the new element.

This event occurs when a user drags a new element from the Toolbox or 'Resources' tab of the Browser window onto a
diagram. The notification is provided immediately before the element is created, so that the Add-In can disable addition
of the element.

Syntax

Function EA_OnPreNewElement (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewElement function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains these EventProperty objects for the element to be created:

Type: A string value corresponding to Element.Type·
FQStereotype: A string value corresponding to Element.FQStereotype·
Stereotype: A string value corresponding to Element.Stereotype·
ParentID: A long value corresponding to Element.ParentID·
DiagramID: A long value corresponding to the ID of the diagram to which the·
element is being added

Return Value

Return True to enable addition of the new element to the model·
Return False to disable addition of the new element·

(c) Sparx Systems 2022 Page 108 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPreNewConnector

EA_OnPreNewConnector notifies Add-Ins that a new connector is about to be created on a diagram. It enables Add-Ins
to permit or deny creation of a new connector.

This event occurs when a user drags a new connector from the Toolbox or 'Resources' tab of the Browser window, onto a
diagram. The notification is provided immediately before the connector is created, so that the Add-In can disable
addition of the connector.

Syntax

Function EA_OnPreNewConnector (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewConnector function syntax contains these elements:

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains these EventProperty objects for the connector to be created:

Type: A string value corresponding to Connector.Type·
Subtype: A string value corresponding to Connector.Subtype·
Stereotype: A string value corresponding to Connector.Stereotype·
ClientID: A long value corresponding to Connector.ClientID·
SupplierID: A long value corresponding to Connector.SupplierID·
DiagramID: A long value corresponding to Connector.DiagramID·

Return Value

Return True to enable addition of the new connector to the model·
Return False to disable addition of the new connector·

(c) Sparx Systems 2022 Page 109 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPreNewDiagram

EA_OnPreNewDiagram notifies Add-Ins that a new diagram is about to be created. It enables Add-Ins to permit or deny
creation of the new diagram.

The notification is provided immediately before the diagram is created, so that the Add-In can disable addition of the
diagram.

Syntax

Function EA_OnPreNewDiagram (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewDiagram function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains these EventProperty objects for the diagram to be created:

Type: A string value corresponding to Diagram.Type·
ParentID: A long value corresponding to Diagram.ParentID·
PackageID: A long value corresponding to Diagram.PackageID·

Return Value

Return True to enable addition of the new diagram to the model·
Return False to disable addition of the new diagram·

(c) Sparx Systems 2022 Page 110 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPreNewDiagramObject

EA_OnPreNewDiagramObject notifies Add-Ins that a new diagram object is about to be dropped on a diagram. It
enables Add-Ins to permit or deny creation of the new object.

This event occurs when a user drags an object directly from the Enterprise Architect Browser window or from the
'Resources' tab of the Browser window onto a diagram. The notification is provided immediately before the object is
created, so that the Add-In can disable addition of the object.

Syntax

Function EA_OnPreNewDiagramObject (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewDiagramObject function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains these EventProperty objects for the object to be created:

Type: A string value corresponding to the Type of object being added to the·
diagram

Stereotype: A string value corresponding to the Stereotype of the object being·
added to the diagram

ID: A long value corresponding to the ID of the element, Package or diagram·
being added to the diagram

DiagramID: A long value corresponding to the ID of the diagram to which the·
object is being added

Return Value

Return True to enable addition of the object to the model·
Return False to disable addition of the object·

(c) Sparx Systems 2022 Page 111 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPreDropFromTree

When a user drags any kind of element from the Browser window onto a diagram, EA_OnPreDropFromTree notifies the
Add-In that a new item is about to be dropped onto a diagram. The notification is provided immediately before the
element is dropped, so that the Add-In can override the default action that would be taken for this drag.

Syntax

Function EA_OnPreDropFromTree (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDropFromTree function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains these EventProperty objects for the element to be created:

ID: A long value of the type being dropped·
Type: A string value corresponding to type of element being dropped·
DiagramID: A long value corresponding to the ID of the diagram to which the·
element is being added

PositionX: The X coordinate into which the element is being dropped·
PositionY: The Y coordinate into which the element is being dropped·
DroppedID: A long value corresponding to the ID of the element the item has·
been dropped onto

Return Value

Return True to allow the default behavior to be executed·
Return False to override this behavior·

(c) Sparx Systems 2022 Page 112 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPreNewAttribute

EA_OnPreNewAttribute notifies Add-Ins that a new attribute is about to be created on an element. It enables Add-Ins to
permit or deny creation of the new attribute.

This event occurs when a user creates a new attribute on an element by either drag-dropping from the Browser window,
using the 'Attributes' tab of the Features window, or using the in-place editor on the diagram. The notification is provided
immediately before the attribute is created, so that the Add-In can disable addition of the attribute.

Syntax

Function EA_OnPreNewAttribute (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewAttribute function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains these EventProperty objects for the attribute to be created:

Type: A string value corresponding to Attribute.Type·
Stereotype: A string value corresponding to Attribute.Stereotype·
ParentID: A long value corresponding to Attribute.ParentID·
ClassifierID: A long value corresponding to Attribute.ClassifierID·

Return Value

Return True to enable addition of the new attribute to the model·
Return False to disable addition of the new attribute·

(c) Sparx Systems 2022 Page 113 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPreNewMethod

EA_OnPreNewMethod notifies Add-Ins that a new method is about to be created on an element. It enables Add-Ins to
permit or deny creation of the new method.

This event occurs when a user creates a new method on an element by either drag-dropping from the Browser window,
using the 'Operations' tab of the Features window, or using the in-place editor on the diagram. The notification is
provided immediately before the method is created, so that the Add-In can disable addition of the method.

Syntax

Function EA_OnPreNewMethod (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewMethod function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains these EventProperty objects for the method to be created:

ReturnType: A string value corresponding to Method.ReturnType·
Stereotype: A string value corresponding to Method.Stereotype·
ParentID: A long value corresponding to Method.ParentID·
ClassifierID: A long value corresponding to Method.ClassifierID·

Return Value

Return True to enable addition of the new method to the model·
Return False to disable addition of the new method·

(c) Sparx Systems 2022 Page 114 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPreNewPackage

EA_OnPreNewPackage notifies Add-Ins that a new Package is about to be created in the model. It enables Add-Ins to
permit or deny creation of the new Package.

This event occurs when a user drags a new Package from the Toolbox or 'Resources' tab of the Browser window onto a
diagram, or by selecting the New Package icon from the Browser window. The notification is provided immediately
before the Package is created, so that the Add-In can disable addition of the Package.

Syntax

Function EA_OnPreNewPackage (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewPackage function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains these EventProperty objects for the Package to be created:

Stereotype: A string value corresponding to Package.Stereotype·
ParentID: A long value corresponding to Package.ParentID·
DiagramID: A long value corresponding to the ID of the diagram to which the·
Package is being added

Return Value

Return True to enable addition of the new Package to the model·
Return False to disable addition of the new Package·

(c) Sparx Systems 2022 Page 115 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPreNewGlossaryTerm

EA_OnPreNewGlossaryTerm notifies Add-Ins that a new glossary term is about to be created. It enables Add-Ins to
permit or deny creation of the new glossary term.

The notification is provided immediately before the glossary term is created, so that the Add-In can disable addition of
the element.

Syntax

Function EA_OnPreNewGlossaryTerm (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreNewGlossaryTerm function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains these EventProperty objects for the glossary term to be
created:

TermID: A string value corresponding to Term.TermID·
Term: A string value corresponding to the name of the glossary term being·
created

Meaning: A string value corresponding to meaning of the glossary term being·
created

Return Value

Return True to enable addition of the new glossary term to the model·
Return False to disable addition of the new glossary term·

(c) Sparx Systems 2022 Page 116 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Tagged Value Events

Enterprise Architect includes the Addin Broadcast Tagged Value type that allows an Add-In to respond to attempts to
edit it. The function that is called depends on the type of object the Tagged Value is on.

Tagged Value Events

Event

EA_OnAttributeTagEdit

EA_OnConnectorTagEdit

EA_OnElementTagEdit

EA_OnMethodTagEdit

(c) Sparx Systems 2022 Page 117 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnAttributeTagEdit

EA_OnAttributeTagEdit is called when the user clicks the button for a Tagged Value of type AddinBroadcast on an
attribute.

The Add-In displays fields to show and change the value and notes; this function provides the initial values for the
Tagged Value notes and value, and takes on any changes on exit of the function.

Syntax

Sub EA_OnAttributeTagEdit (Repository As EA.Repository, AttributeID As Long, String TagName, String TagValue,
String TagNotes)

The EA_OnAttributeTagEdit function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

AttributeID Long

Direction: IN

Description: The ID of the attribute that this Tagged Value is on.

TagName String

Direction: IN

Description: The name of the Tagged Value to edit.

TagValue String

Direction: INOUT

Description: The current value of the tag; if the value is updated, the new value is
stored in the repository on exit of the function.

TagNotes String

Direction: INOUT

Description: The current value of the Tagged Value notes; if the value is updated,
the new value is stored in the repository on exit of the function.

(c) Sparx Systems 2022 Page 118 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnConnectorTagEdit

EA_OnConnectorTagEdit is called when the user clicks the button for a Tagged Value of type AddinBroadcast on a
connector.

The Add-In displays fields to show and change the value and notes; this function provides the initial values for the
Tagged Value notes and value, and takes on any changes on exit of the function.

Syntax

Sub EA_OnConnectorTagEdit (Repository As EA.Repository, ConnectorID As Long, String TagName, String
TagValue, String TagNotes)

The EA_OnConnectorTagEdit function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model.

Poll its members to retrieve model data and user interface status information.

ConnectorID Long

Direction: IN

Description: The ID of the connector that this Tagged Value is on.

TagName String

Direction: IN

Description: The name of the Tagged Value to edit.

TagValue String

Direction: INOUT

Description: The current value of the tag; if the value is updated, the new value is
stored in the repository on exit of the function.

TagNotes String

Direction: INOUT

Description: The current value of the Tagged Value notes; if the value is updated,
the new value is stored in the repository on exit of the function.

(c) Sparx Systems 2022 Page 119 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnElementTagEdit

EA_OnElementTagEdit is called when the user clicks the button for a Tagged Value of type AddinBroadcast on an
element.

The Add-In displays fields to show and change the value and notes; this function provides the initial values for the
Tagged Value notes and value, and takes on any changes on exit of the function.

Syntax

Sub EA_OnElementTagEdit (Repository As EA.Repository, ObjectID As Long, String TagName, String TagValue,
String TagNotes)

The EA_OnElementTagEdit function syntax contains these elements:

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

ObjectID Long

Direction: IN

Description: The ID of the object (element) that this Tagged Value is on.

TagName String

Direction: IN

Description: The name of the Tagged Value to edit.

TagValue String

Direction: INOUT

Description: The current value of the tag; if the value is updated, the new value is
stored in the repository on exit of the function.

TagNotes String

Direction: INOUT

Description: The current value of the Tagged Value notes; if the value is updated,
the new value is stored in the repository on exit of the function.

(c) Sparx Systems 2022 Page 120 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnMethodTagEdit

EA_OnMethodTagEdit is called when the user clicks the button for a Tagged Value of type AddinBroadcast on an
operation.

The Add-In displays fields to show and change the value and notes; this function provides the initial values for the
Tagged Value notes and value, and takes on any changes on exit of the function.

Syntax

Sub EA_OnMethodTagEdit (Repository As EA.Repository, MethodID As Long, String TagName, String TagValue,
String TagNotes)

The EA_OnMethodTagEdit function syntax contains these elements:

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

MethodID Long

Direction: IN

Description: The ID of the method that this Tagged Value is on.

TagName String

Direction: IN

Description: The name of the Tagged Value to edit.

TagValue String

Direction: INOUT

Description: The current value of the tag; if the value is updated, the new value is
stored in the repository on exit of the function.

TagNotes String

Direction: INOUT

Description: The current value of the Tagged Value notes; if the value is updated,
the new value is stored in the repository on exit of the function.

(c) Sparx Systems 2022 Page 121 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Technology Events

Enterprise Architect Add-Ins can respond to events associated with the use of MDG Technologies.

Technology Broadcast Events

Event

EA_OnInitializeTechnologies

EA_OnPreActivateTechnology

EA_OnPostActivateTechnology

EA_OnPreDeleteTechnology (Deprecated)

EA_OnDeleteTechnology (Deprecated)

EA_OnImportTechnology (Deprecated)

(c) Sparx Systems 2022 Page 122 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnInitializeTechnologies

EA_OnInitializeTechnologies requests that an Add-In pass an MDG Technology to Enterprise Architect for loading.

This event occurs on Enterprise Architect start up. Return your technology XML to this function and Enterprise
Architect loads and enables it.

Syntax

Function EA_OnInitializeTechnologies (Repository As EA.Repository) As Object

The EA_OnInitializeTechnologies function syntax contains this parameter:

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Return Value

Return the MDG Technology as a single XML string.

Example

Public Function EA_OnInitializeTechnologies(ByVal Repository As EA.Repository) As Object

 EA_OnInitializeTechnologies = My.Resources.MyTechnology

End Function

(c) Sparx Systems 2022 Page 123 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPreActivateTechnology

EA_OnPreActivateTechnology notifies Add-Ins that an MDG Technology resource is about to be activated in the model.

This event occurs when a user selects to activate an MDG Technology resource in the model (by clicking on the Set
Active button on the 'MDG Technologies' dialog or by selecting the technology in the list box in the Default Tools
toolbar).

The notification is provided immediately after the user attempts to activate the MDG Technology, so that the Add-In can
permit or disable activation of the Technology.

Syntax

Function EA_OnPreActivateTechnology (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreActivateTechnology function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains these EventProperty objects for the MDG Technology to be
activated:

TechnologyID: A string value corresponding to the MDG Technology ID·

Return Value

Return True to enable activation of the MDG Technology resource in the model·
Return False to disable activation of the MDG Technology resource·

(c) Sparx Systems 2022 Page 124 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPostActivateTechnology

EA_OnPostActivateTechnology notifies Add-Ins that an MDG Technology resource has been activated in the model.

This event occurs when a user activates an MDG Technology resource in the model (by clicking on the Set Active button
on the 'MDG Technologies' dialog, or by selecting the technology in the list box in the Default Tools toolbar).

The notification is provided immediately after the user succeeds in activating the MDG Technology, so that the Add-In
can update the Technology if necessary.

Syntax

Function EA_OnPostActivateTechnology (Repository As EA.Repository, Info As EA.EventProperties)

The EA_OnPostActivateTechnology function syntax contains these parameters:

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains these EventProperty objects for the MDG Technology to be
activated:

TechnologyID: A string value corresponding to the MDG Technology ID·

Return Value

Return True if the MDG Technology resource is updated during this notification. Return False otherwise.

(c) Sparx Systems 2022 Page 125 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnPreDeleteTechnology

Deprecated - refers to deleting a technology through the 'Resources' tab of the Browser window; this process is no longer
recommended. See Deploy An MDG Technology for information on recommended methods for using technologies.

EA_OnPreDeleteTechnology notifies Add-Ins that an MDG Technology resource is about to be deleted from the model.

This event occurs when a user deletes an MDG Technology resource from the model.

The notification is provided immediately after the user confirms their request to delete the MDG Technology, so that the
Add-In can disable deletion of the MDG Technology.

Related Broadcast Events

Event

EA_OnInitializeTechnologies

EA_OnPreActivateTechnology

EA_OnPostActivateTechnology

Syntax

Function EA_OnPreDeleteTechnology (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

The EA_OnPreDeleteTechnology function syntax contains these elements:

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains this EventProperty object for the MDG Technology to be
deleted:

TechnologyID: A string value corresponding to the MDG Technology ID·

Return Value

Return True to enable deletion of the MDG Technology resource from the model·
Return False to disable deletion of the MDG Technology resource·

(c) Sparx Systems 2022 Page 126 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

(c) Sparx Systems 2022 Page 127 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnDeleteTechnology

Deprecated - refers to deleting a technology through the 'Resources' tab of the Browser window; this process is no longer
recommended. See Deploy An MDG Technology for information of recommended methods for using technologies.

EA_OnDeleteTechnology notifies Add-Ins that an MDG Technology resource has been deleted from the model.

This event occurs after a user has deleted an MDG Technology resource from the model. Add-Ins that require an MDG
Technology resource to be loaded can catch this event to disable certain functionality.

Related Events

Event

EA_OnInitializeTechnologies

EA_OnPreActivateTechnology

EA_OnPostActivateTechnology

Syntax

Sub EA_OnDeleteTechnology (Repository As EA.Repository, Info As EA.EventProperties)

The EA_OnDeleteTechnology function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains these EventProperty objects:

TechnologyID: A string value corresponding to the MDG Technology ID·

Return Value

None.

(c) Sparx Systems 2022 Page 128 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_OnImportTechnology

Deprecated - refers to importing a technology into the 'Resources' tab of the Browser window; this process is no longer
recommended. See Deploy An MDG Technology for information of recommended methods for using technologies.

EA_OnImportTechnology notifies Add-Ins that you have imported an MDG Technology resource into the model.

This event occurs after you have imported an MDG Technology resource into the model. Add-Ins that require an MDG
Technology resource to be loaded can catch this Add-In to enable certain functionality.

Related Events

Event

EA_OnInitializeTechnologies

EA_OnPreActivateTechnology

EA_OnPostActivateTechnology

Syntax

Sub EA_OnImportTechnology (Repository As EA.Repository, Info As EA.EventProperties)

The EA_OnImportTechnology function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains these EventProperty objects:

TechnologyID: A string value corresponding to the MDG Technology ID·

Return Value

None.

(c) Sparx Systems 2022 Page 129 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Technology Rules

The Technology Rules set of events provides hooks for Add-Ins to customize the behavior for their own modeling
languages beyond that which can be specified through MDG Technologies alone. These events have been subdivided
into categories to assist in exploring the events that are available.

Technology Rule Events

Events

The EARules_Initialize event is called for all Add-Ins during initialization. Specifying one or more profiles for
which to define rules is a pre-requisite for all rule calls.

Diagram Appearance Rule events modify some facet of how elements are rendered on diagrams.

User Interface Rule events are used to show, hide or customize aspects of the user interface, or to customize
available actions to work naturally with a language.

(c) Sparx Systems 2022 Page 130 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_Initialize

EARules_Initialize enables Add-Ins to override internal behavior for one or more technologies.

This event occurs during Add-In initialization.

Syntax

Function EARules_Initialize (Repository As EA.Repository, RuleIndex As Integer, Base As String) As String

The EARules_Initialize function syntax contains these parameters.

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

RuleIndex Integer

Direction: IN

Description: Provides a count of the number of calls to this function. This allows
you to define multiple rule sets without maintaining your own state for previous
calls to this function.

Base String

Direction: OUT

Description: This parameter can be assigned the name of an existing set of rules
that will be treated as a superclass of the rule set defined by your Add-In. The rules
are named by the profile name containing the stereotypes or diagram types that are
being modified. You will usually use this value if you are extending the stereotypes
within that profile.

The customized rules that are built-in to Enterprise Architect are:

ArchiMate3.0·
BPMN2.0·
DMN1.1·
MARTE·
Modelica·
SPEM·
SysML1.2·
SysML1.3·
SysML1.4·
SysPhS·

Return Value

Returns a non-empty string that matches the name of a profile or diagram profile to define rules for that profile; this·

(c) Sparx Systems 2022 Page 131 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

function will be called again to allow rules for additional profiles

Returns an empty string to specify that the Add-In does not define any additional technology-specific rules·

(c) Sparx Systems 2022 Page 132 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Diagram Appearance Rule Events

Diagram Appearance Events

Event

EARules_ClosePartitionName is called to allow control over rendering a closing line after the name for an Activity
Partition.

EARules_ElementDisplayName is called to allow alternative text to be displayed as the name during the rendering
of an element.

EARules_GetCompartmentItem is called to allow altering the text to display for an item in a built-in compartment.

EARules_GetCompartmentName is called to determine the name displayed for built-in compartments.

EARules_GetNameUnderline is called by Enterprise Architect to determine if the name should be drawn with an
underline.

EARules_GetPropertyString is called to provide alternative or additional text to the default element property string.

EARules_GetShapeScript is called to allow a custom shape script for elements without one defined.

EARules_ShowStereotype is called to allow control over stereotype visibility for the default rendering of an
Activity Partition.

EARules_StereotypeDisplayName is called by Enterprise Architect to provide a custom keyword to display on the
diagram in place of the stereotype name.

(c) Sparx Systems 2022 Page 133 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_ClosePartitionName

EARules_ClosePartitionName allows an Add-In that is registered to provide rules for a language to determine if the
name for an Activity Partition is displayed with a closing line.

This event occurs during diagram drawing.

Syntax

Function EARules_ClosePartitionName (Repository As EA.Repository, Language As String, Element as EA.Element)
As Integer

The EARules_ClosePartitionName function syntax contains these parameters.

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Language String

Direction: IN

Description: Specifies the language for the rule that Enterprise Architect is
requesting. This will match one of the values returned from EARules_Initialize.

Element EA.Element

Direction: IN

Description: Specifies the element currently being drawn.

Return Value

Return a positive value to specify that the name should be closed·
Return zero to specify the name should not be closed·
Return a negative value to use the behavior from the base rules·

(c) Sparx Systems 2022 Page 134 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_ElementDisplayName

EARules_ElementDisplayName allows an Add-In registered to provide rules for a language to override the text
displayed for the name in the default notation. An example of where you might want to use this is if an element should
take its name automatically from another element.

This event occurs during the drawing of Activity Partitions and Shape Scripts.

Syntax

Function EARules_ElementDisplayName (Repository As EA.Repository, Language As String, Element as EA.Element,
CurrentName as String, Base as Integer) As String

The EARules_ElementDisplayName function syntax contains these parameters.

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Language String

Direction: IN

Description: Specifies the language for the rule that Enterprise Architect is
requesting. This will match one of the values returned from EARules_Initialize.

Element EA.Element

Direction: IN

Description: Specifies the element currently being drawn.

CurrentName String

Direction: IN

Description: Specifies the name currently being used for this element.

Base Integer

Direction: OUT

Description: Controls whether the base rules will be called if you return an empty
value. A non-zero value and return of an empty string means that the parent rules
will determine the display of the element name.

Return Value

A string to override the displayed name of the element on a diagram.

(c) Sparx Systems 2022 Page 135 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_GetCompartmentItem

EARules_GetCompartmentName allows an Add-In registered to provide rules for a language to override the text
displayed for individual items in a compartment.

This event occurs during diagram drawing.

Syntax

Function EARules_GetCompartmentItem (Repository As EA.Repository, Language As String, Element as EA.Element,
Compartment as String, Item as String, Base as Integer) As String

The EARules_GetCompartmentItem function syntax contains these parameters.

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Language String

Direction: IN

Description: Specifies the language for the rule that Enterprise Architect is
requesting. This will match one of the values returned from EARules_Initialize.

Element EA.Element

Direction: IN

Description: Specifies the element currently being drawn.

Compartment String

Direction: IN

Description: Specifies the compartment being rendered.

Item String

Direction: IN

Description: Specifies the item being rendered.

Base Integer

Direction: OUT

Description: Controls whether the base rules will be called if you return an empty
value. A non-zero value and return of an empty string means that the parent rules
will determine the display of the compartment item.

Return Value

A string defining the text to be displayed for this compartment item.

(c) Sparx Systems 2022 Page 136 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

(c) Sparx Systems 2022 Page 137 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_GetCompartmentName

EARules_GetCompartmentName allows an Add-In registered to provide rules for a language to override the label
displayed at the top of a compartment.

This event occurs during diagram drawing.

Syntax

Function EARules_GetCompartmentName (Repository As EA.Repository, Language As String, Element as EA.Element,
Compartment as String, Base as Integer) As String

The EARules_GetCompartmentName function syntax contains these parameters.

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Language String

Direction: IN

Description: Specifies the language for the rule that Enterprise Architect is
requesting. This will match one of the values returned from EARules_Initialize.

Element EA.Element

Direction: IN

Description: Specifies the element currently being drawn.

Compartment String

Direction: IN

Description: Specifies the compartment being rendered.

Base Integer

Direction: OUT

Description: Controls whether the base rules will be called if you return an empty
value. A non-zero value and return of an empty string means that the parent rules
will determine the display of the compartment name.

Return Value

A string defining the name to be rendered for the specified compartment.

(c) Sparx Systems 2022 Page 138 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_GetNameUnderline

EARules_GetNameUnderline allows an Add-In registered to provide rules for a language to control if the name of an
element is rendered with an underline.

This event occurs during diagram drawing.

Syntax

Function EARules_GetNameUnderline (Repository As EA.Repository, Language As String, Element as EA.Element) As
Integer

The EARules_GetNameUnderline function syntax contains these parameters.

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Language String

Direction: IN

Description: Specifies the language for the rule that Enterprise Architect is
requesting. This will match one of the values returned from EARules_Initialize.

Element EA.Element

Direction: IN

Description: Specifies the element currently being drawn.

Return Value

Return a positive value to specify that the name should be underlined·
Return zero to specify that the name should not be underlined·
Return a negative value to use the behavior from the base rules·

(c) Sparx Systems 2022 Page 139 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_GetPropertyString

EARules_GetPropertyString allows an Add-In registered to provide rules for a language to override the text for the
property string of an element. In standard UML notation this is rendered between '{' and '}' near the name.

This event occurs during diagram drawing.

Syntax

Function EARules_GetPropertyString (Repository As EA.Repository, Language As String, Element as EA.Element,
Order as Integer) As String

The EARules_GetPropertyString function syntax contains these parameters.

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Language String

Direction: IN

Description: Specifies the language for the rule that Enterprise Architect is
requesting. This will match one of the values returned from EARules_Initialize.

Element EA.Element

Direction: IN

Description: Specifies the element currently being drawn.

Order Integer

Direction: OUT

Description: Controls the order in which text provided by base rules is added to the
return value.

Assign a negative value to place the base property string ahead of the return·
value

Assign a positive value to place the base property string after the return value·
Assign zero to prevent the base property string from being displayed·

Return Value

A string defining the contents of the property string used in the default element notation.

(c) Sparx Systems 2022 Page 140 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_GetShapeScript

EARules_GetShapeScript allows an Add-In registered to provide rules for a language to customize the rendering of an
element for the modeling language of the diagram being drawn.

This event occurs during diagram drawing.

Syntax

Function EARules_GetShapeScript (Repository As EA.Repository, Language As String, Element as EA.Element) As
String

The EARules_GetShapeScript function syntax contains these parameters.

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Language String

Direction: IN

Description: Specifies the language for the rule that Enterprise Architect is
requesting. This will match one of the values returned from EARules_Initialize.

Element EA.Element

Direction: IN

Description: Specifies the element currently being drawn.

Return Value

Return a string containing the Shape Script to use for this element·
Return an empty string to defer to the parent rules·

(c) Sparx Systems 2022 Page 141 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_ShowStereotype

EARules_ShowStereotype allows an Add-In registered to provide rules for a language to determine if the stereotype for
an Activity Partition is displayed with the name.

This event occurs during diagram drawing.

Syntax

Function EARules_ShowStereotype (Repository As EA.Repository, Language As String, Element as EA.Element) As
Integer

The EARules_ShowStereotype function syntax contains these parameters:

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Language String

Direction: IN

Description: Specifies the language for the rule that Enterprise Architect is
requesting. This will match one of the values returned from EARules_Initialize.

Element EA.Element

Direction: IN

Description: Specifies the element currently being drawn.

Return Value

Return a positive value to specify that the name should be closed·
Return zero to specify that the name should not be closed·
Return a negative value to use the behavior from the base rules·

(c) Sparx Systems 2022 Page 142 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_StereotypeDisplayName

EARules_StereotypeDisplayName allows an Add-In registered to provide rules for a language to override the text
displayed for the stereotype in the default notation. In standard UML notation, this is rendered between '«' and '»' near the
name.

This event occurs during diagram drawing.

Syntax

Function EARules_StereotypeDisplayName (Repository As EA.Repository, Language As String, Stereotype as String,
Base as Integer) As String

The EARules_StereotypeDisplayName function syntax contains these parameters.

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Language String

Direction: IN

Description: Specifies the language for the rule that Enterprise Architect is
requesting. This will match one of the values returned from EARules_Initialize.

Stereotype String

Direction: IN

Description: Specifies the fully qualified name of the stereotype being queried.

Base Integer

Direction: OUT

Description: Controls whether the base rules will be called if you return an empty
value. A non-zero value and return of an empty string means that the parent rules
will determine the display of the stereotype.

Return Value

A string to override the displayed name of the stereotype on a diagram.

(c) Sparx Systems 2022 Page 143 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

User Interface Rule Events

User Interface Behavior Events

Event

EARules_AllowNesting is called to determine if creating a visual nesting of two elements on a diagram results in
setting the ownership in the browser.

EARules_AppendChildDiagrams is called to build the context menu for adding child diagrams to an element.

EARules_AppendChildElements is called to build the context menu for adding child elements to an element.

EARules_CanOverrideStereotype is called to determine if the stereotype on a Type is assigned to a property when
assigning the type.

EARules_CanProxy is called to determine if this element can be represented by another element.

EARules_CanReparent is called to determine if visually nesting on a diagram is intended to update ownership in the
Browser.

EARules_CreateModel is called to allow creation of a wrapping element during creation of a diagram.

EARules_EnableElementProperty is called to determine if a particular property in the docked Properties window
should allow edits for this element.

EARules_ForceLength is used to allow particular diagrams to require elements determined by
EARules_IsAdjustable to have their length fixed to the size of the diagram.

EARules_AppendChildDiagrams is called to override a request for a UML diagram when the context specifies a
different language is being used.

EARules_IsAdjustable is called to determine which elements can have their length automatically adjusted on
diagrams where EARules_ForceLength has allowed the operation.

EARules_PropagateStereotype is called to determine if a classifier stereotype can be applied to an instance using
that classifier.

EARules_ShowElementProperty is called to determine if a particular property in the docked Properties window
should be displayed for this element.

EARules_ShowFrame is called to automatically insert the parent of the diagram as a frame.

EARules_ShowParentFrame is called to automatically insert the parent of the diagram as a frame.

(c) Sparx Systems 2022 Page 144 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_AllowNesting

EARules_AllowNesting allows an Add-In registered to provide rules for a language to specify if two elements should be
nested in the Browser window after being nested on a diagram.

This event occurs while a user drags one element onto another in a diagram.

Syntax

Function EARules_AllowNesting (Repository As EA.Repository, Language As String, Child as EA.Element, Parent as
EA.Element, Diagram as EA.Diagram) As Integer

The EARules_AllowNesting function syntax contains these parameters.

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Language String

Direction: IN

Description: Specifies the language for the rule that Enterprise Architect is
requesting. This will match one of the values returned from EARules_Initialize.

Child EA.Element

Direction: IN

Description: Specifies the element that has been graphically nested within another
element.

Parent EA.Element

Direction: IN

Description: Specifies the target element of a drag-and-drop operation within a
diagram.

Diagram EA.Diagram

Direction: IN

Description: The diagram that the move event has occurred on.

Return Value

Return a positive value to allow the nesting to occur·
Return a negative value to use the base rules·
Return zero to prevent the nesting from occurring·

(c) Sparx Systems 2022 Page 145 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_AppendChildDiagrams

EARules_AppendChildDiagrams allows an Add-In registered to provide rules for a language to specify the list of items
to be shown in the '[New Child Diagram' menu.

This event occurs when a context menu is shown that includes 'New Child Diagram'.

Syntax

Function EARules_AppendChildDiagrams (Repository As EA.Repository, Language As String, Parent as EA.Element,
Diagram as EA.Diagram, Order as Integer) As Variant

The EARules_AppendChildDiagrams function syntax contains these parameters.

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Language String

Direction: IN

Description: Specifies the language for the rule that Enterprise Architect is
requesting. This will match one of the values returned from EARules_Initialize.

Parent EA.Element

Direction: IN

Description: Specifies the element showing a context menu that includes the option
for new child diagrams.

Diagram EA.Diagram

Direction: IN

Description: The diagram that is showing the parent element. If a user is showing a
context menu outside a diagram, this could be null.

Order EA.Diagram

Direction: OUT

Description: Allows controlling if and where the child diagrams specified in the
parent rules are shown. A positive value means they will be shown after the items
specified in this function. Zero means they are not shown at all. A negative value
means that they are shown after the items specified in this function.

Return Value

This function supports returning either a single string with multiple items specified by a ';', or an array of strings.

Each item can be one of these:

"-" - inserts a separator·

(c) Sparx Systems 2022 Page 146 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Any other text - shows that text as the item, and if the user clicks on it the Add-In is responsible for creating the·
requested diagram in EA_OnMenuClick

(c) Sparx Systems 2022 Page 147 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_AppendChildElements

EARules_AppendChildElements allows an Add-In registered to provide rules for a language to specify the list of items
to be shown in the 'New Child Element' menu.

This event occurs when a context menu is shown that includes 'New Child Element'.

Syntax

Function EARules_AppendChildElements (Repository As EA.Repository, Language As String, Parent as EA.Element,
Diagram as EA.Diagram, Order as Integer) As Variant

The EARules_AppendChildElements function syntax contains these parameters.

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Language String

Direction: IN

Description: Specifies the language for the rule that Enterprise Architect is
requesting. This will match one of the values returned from EARules_Initialize.

Parent EA.Element

Direction: IN

Description: Specifies the element showing a context menu that includes the option
for new child diagrams.

Diagram EA.Diagram

Direction: IN

Description: The diagram that is showing the parent element. If a user is showing a
context menu outside a diagram, this could be null.

Order EA.Diagram

Direction: OUT

Description: Allows the control of if and where the child diagrams specified in the
parent rules are shown. A positive value means they will be shown after the items
specified in this function. Zero means they are not shown at all. A negative value
means that they are shown after the items specified in this function.

Return Value

This function supports returning either a single string with multiple items specified by a ';', or an array of strings.

Each item can be one of these:

"-" - inserts a separator·

(c) Sparx Systems 2022 Page 148 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

A valid toolbox string including an alias - should be of the form <profile>::<stereotype>(UML::<base>)=<alias>·
Any other text - shows that text as the item, and if the user clicks on it the Add-In is responsible for creating the·
requested element in EA_OnMenuClick

(c) Sparx Systems 2022 Page 149 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_CanOverrideStereotype

EARules_CanOverrideStereotype allows an Add-In registered to provide rules for a language to control when the
stereotype from a newly assigned type is propagated to the property.

This event occurs when a type is assigned to a property element.

Syntax

Function EARules_CanOverrideStereotype (Repository As EA.Repository, Language As String, Element as
EA.Element) As Integer

The EARules_CanOverrideStereotype function syntax contains these parameters.

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Language String

Direction: IN

Description: Specifies the language for the rule that Enterprise Architect is
requesting. This will match one of the values returned from EARules_Initialize.

Element EA.Element

Direction: IN

Description: Specifies the element showing a context menu that includes the option
for new child diagrams.

Return Value

Return a positive value to allow the stereotype from the type to override the current stereotype·
Return zero to prevent any change to the element stereotype·
Return a negative value to use the behavior from the base rules·

(c) Sparx Systems 2022 Page 150 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_CanProxy

EARules_CanProxy allows an Add-In registered to provide rules for a language to specify that one element is a proxy for
another.

This event should only be handled for rules extending BPMN.

Syntax

Function EARules_CanProxy (Repository As EA.Repository, Language As String, Element as EA.Element) As Integer

The EARules_CanProxy function syntax contains these parameters.

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Language String

Direction: IN

Description: Specifies the language for the rule that Enterprise Architect is
requesting. This will match one of the values returned from EARules_Initialize.

Target EA.Element

Direction: IN

Description: Specifies the element showing a context menu that includes the option
for new child diagrams.

Return Value

Return a positive value to specify that the target element is a proxy·
Return zero to specify that the target element is not a proxy·
Return a negative value to use the behavior from the base rules·

(c) Sparx Systems 2022 Page 151 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_CanReparent

EARules_CanReparent allows an Add-In registered to provide rules for a language to specify that the child diagrams for
an element can be changed to other diagrams.

Syntax

Function EARules_CanReparent (Repository As EA.Repository, Language As String, Element as EA.Element) As
Integer

The EARules_CanReparent function syntax contains these parameters.

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Language String

Direction: IN

Description: Specifies the language for the rule that Enterprise Architect is
requesting. This will match one of the values returned from EARules_Initialize.

Element EA.Element

Direction: IN

Description: Specifies the element showing a context menu that includes the option
for new child diagrams.

Return Value

Return a positive value to allow reparenting to occur·
Return zero to prevent reparenting·
Return a negative value to use the behavior from the base rules·

(c) Sparx Systems 2022 Page 152 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_CreateModel

EARules_CreateModel allows an Add-In registered to provide rules for a language to create a wrapping element when a
new diagram is created.

This event occurs during diagram creation.

Syntax

Function EARules_CreateModel (Repository As EA.Repository, Language As String, Diagram as EA.Diagram) As
Integer

The EARules_CreateModel function syntax contains these parameters.

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Language String

Direction: IN

Description: Specifies the language for the rule that Enterprise Architect is
requesting. This will match one of the values returned from EARules_Initialize.

Diagram EA.Diagram

Direction: IN

Description: Specifies the diagram currently being created.

Return Value

Return zero or a positive value if no further action is required·
Return a negative value to use the behavior from the base rule·

(c) Sparx Systems 2022 Page 153 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_EnableElementProperty

EARules_EnableElementProperty allows an Add-In registered to provide rules for a language to control if individual
properties should be displayed as read-only in the docked Properties window.

This is called during selection of elements when the Properties window is visible.

Syntax

Function EARules_EnableElementProperty (Repository As EA.Repository, Language As String, Element as
EA.Element, Namespace as String, Class as String, Property as String) As Integer

The EARules_EnableElementProperty function syntax contains these parameters.

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Language String

Direction: IN

Description: Specifies the language for the rule that Enterprise Architect is
requesting. This will match one of the values returned from EARules_Initialize.

Element EA.Element

Direction: IN

Description: Specifies the element currently being drawn.

Namespace String

Direction: IN

Description: Specifies the top level language this property comes from. This will be
either "UML" or the name of a profile.

Class String

Direction: IN

Description: Specifies the type this property was defined in. In the UML namespace
that means the metaclass defined in UML. Otherwise it will be a stereotype.

Property String

Direction: IN

Description: Specifies the metaclass or stereotype property to enable or disable.

Return Value

Return a positive value to allow edits to the property·

(c) Sparx Systems 2022 Page 154 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Return zero to disable edits to the property·
Return a negative value to use the behavior from the base rules·

(c) Sparx Systems 2022 Page 155 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_ForceLength

EARules_ForceLength allows an Add-In registered to provide rules for a language to specify that some elements are
sized to the width or height of the diagram.

This event occurs during diagram load and resize events.

Syntax

Function EARules_ForceLength (Repository As EA.Repository, Language As String, Diagram as EA.Diagram) As
Integer

The EARules_ForceLength function syntax contains these parameters.

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Language String

Direction: IN

Description: Specifies the language for the rule that Enterprise Architect is
requesting. This will match one of the values returned from EARules_Initialize.

Diagram EA.Diagram

Direction: IN

Description: Specifies the diagram currently being loaded.

Return Value

Return a positive value to specify that this diagram should enforce the length of elements·
Return zero to specify that no elements should have their length enforced·
Return a negative value to use the behavior from the base rules·

(c) Sparx Systems 2022 Page 156 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_GetEquivalentDiagram

EARules_GetEquivalentDiagram allows an Add-In registered to provide rules for a language to override the diagram
type created when a UML diagram would otherwise be created.

This event occurs during user requests to create a structure that includes a diagram.

Syntax

Function EARules_GetEquivalentDiagram (Repository As EA.Repository, Language As String, DiagramType as String)
As String

The EARules_GetEquivalentDiagram function syntax contains these parameters.

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Language String

Direction: IN

Description: Specifies the language for the rule that Enterprise Architect is
requesting. This will match one of the values returned from EARules_Initialize.

DiagramType String

Direction: IN

Description: Specifies the type of diagram that has been requested.

Return Value

A string containing the qualified name of a diagram type to replace the UML diagram requested.

Return an empty string to allow the base rules to control the diagram type.

(c) Sparx Systems 2022 Page 157 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_IsAdjustable

EARules_IsAdjustable allows an Add-In registered to provide rules for a language to specify which elements are sized to
the width or height of the diagram.

This event occurs during diagram load and resize events.

Syntax

Function EARules_IsAdjustable (Repository As EA.Repository, Language As String, Element as EA.Element) As
Integer

The EARules_IsAdjustable function syntax contains these parameters.

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Language String

Direction: IN

Description: Specifies the language for the rule that Enterprise Architect is
requesting. This will match one of the values returned from EARules_Initialize.

Element EA.Element

Direction: IN

Description: Specifies the element.

Return Value

Return a positive value to allow automatic resize to occur·
Return zero to prevent automatic resize·
Return a negative value to use the behavior from the base rules·

(c) Sparx Systems 2022 Page 158 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_PropagateStereotype

EARules_PropagateStereotype allows an Add-In registered to provide rules for a language to control if a particular
stereotype from a classifier should be applied to an instance with that classifier.

This event occurs when a classifier is assigned to an instance.

Syntax

Function EARules_PropagateStereotype (Repository As EA.Repository, Language As String, Element as EA.Element,
Stereotype as String) As Integer

The EARules_PropagateStereotype function syntax contains these parameters.

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Language String

Direction: IN

Description: Specifies the language for the rule that Enterprise Architect is
requesting. This will match one of the values returned from EARules_Initialize.

Element EA.Element

Direction: IN

Description: Specifies the element showing a context menu that includes the option
for applying the stereotype.

Stereotype String

Direction: IN

Description: Specifies the qualified name of the stereotype to apply.

Return Value

Return a positive value to allow the stereotype from the type to be applied·
Return zero to prevent the stereotype from being applied·
Return a negative value to use the behavior from the base rules·

(c) Sparx Systems 2022 Page 159 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_ShowElementProperty

EARules_ShowElementProperty allows an Add-In registered to provide rules for a language to control visibility for
individual properties in the docked Properties window.

This is called during selection of elements when the Properties window is visible.

Syntax

Function EARules_ShowElementProperty (Repository As EA.Repository, Language As String, Element as EA.Element,
Namespace as String, Class as String, Property as String) As Integer

The EARules_ShowElementProperty function syntax contains these parameters.

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Language String

Direction: IN

Description: Specifies the language for the rule that Enterprise Architect is
requesting. This will match one of the values returned from EARules_Initialize

Element EA.Element

Direction: IN

Description: Specifies the element currently being drawn.

Namespace String

Direction: IN

Description: Specifies the top level language this property comes from. Will either
be "UML" or the name of a profile.

Class String

Direction: IN

Description: Specifies the type this property was defined in. In the UML namespace
that means the metaclass defined in UML. Otherwise it will be a stereotype.

Property String

Direction: IN

Description: Specifies the metaclass or stereotype property to display or hide.

Return Value

Return a positive value to display the property·

(c) Sparx Systems 2022 Page 160 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Return zero to hide the property·
Return a negative value to use the behavior from the base rules·

(c) Sparx Systems 2022 Page 161 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_ShowFrame

EARules_ShowFrame allows an Add-In registered to provide rules for a language to determine if the owner of a diagram
should always be displayed on the diagram as a diagram frame.

This event occurs during diagram load.

Syntax

Function EARules_ShowFrame (Repository As EA.Repository, Language As String, Diagram as EA.Diagram) As
Integer

The EARules_ShowFrame function syntax contains these parameters.

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Language String

Direction: IN

Description: Specifies the language for the rule that Enterprise Architect is
requesting. This will match one of the values returned from EARules_Initialize.

Diagram EA.Diagram

Direction: IN

Description: Specifies the diagram currently being loaded.

Return Value

Return a positive value to specify that the parent element should be shown as a frame on this diagram·
Return zero to specify the frame should not be displayed on the diagram·
Return a negative value to use the behavior from the base rules·

(c) Sparx Systems 2022 Page 162 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EARules_ShowParentFrame

EARules_ShowParentFrame allows an Add-In registered to provide rules for a language to determine if the owner of a
diagram should always be displayed on the diagram as a diagram frame.

This event occurs during diagram load.

Syntax

Function EARules_ShowParentFrame (Repository As EA.Repository, Language As String, Diagram as EA.Diagram) As
Integer

The EARules_ShowParentFrame function syntax contains these parameters.

Parameter Description

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Language String

Direction: IN

Description: Specifies the language for the rule that Enterprise Architect is
requesting. This will match one of the values returned from EARules_Initialize.

Diagram EA.Diagram

Direction: IN

Description: Specifies the diagram currently being loaded.

Return Value

Return a positive value to specify that the parent element should be shown as a frame on this diagram·
Return zero to specify the name should not be displayed on the diagram·
Return a negative value to use the behavior from the base rules·

(c) Sparx Systems 2022 Page 163 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Custom Views

Enterprise Architect enables custom windows to be inserted as a tab within the Diagram View that appears at the center
of the Enterprise Architect frame.

Creating a custom view helps you to easily display a custom interface within Enterprise Architect, alongside other
diagrams and built-in views for quick and easy access.

Uses for this facility include:

Reports and graphs showing summary data of the model·
Alternative views of a diagram·
Alternative views of the model·
Views of external data related to model data·
Documentation tools·

Bear in mind that the 'Open Diagrams in Single Window' option in the 'Application Look' dialog will swap diagrams in
the Diagram View rather than open more diagram tabs.

(c) Sparx Systems 2022 Page 164 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Create a Custom View

A custom view must be designed as an ActiveX Custom Control and inserted via the Automation Interface. ActiveX
Custom Controls can be created using most well-known programming tools, including Microsoft Visual Studio. See the
documentation provided by the relevant vendor on how to create a custom control to produce an OCX file.

Once the custom control has been created and registered on the target system, it can be added through the AddTab()
method of the Repository object. While it is possible to call AddTab() from any automation client, it is likely that you
would call it from an Add-In, and that the Add-In is defined in the same OCX that provides the custom view.

C# Code Example

 public class Addin

 {

 UserControl1 m_MyControl;

 public void EA_Connect(EA.Repository Rep)

 {

 }

 public object EA_GetMenuItems(EA.Repository Repository, string Location, string MenuName)

 {

 if(MenuName == "")

 return "-&C# Control Demo";

 else

 {

 String() ret = {"Show Custom View", "Show Button"};

 return ret;

 }

 }

 public void EA_MenuClick(EA.Repository Rep, string Location, string MenuName, string ItemName)

 {

 if(ItemName == "Show Custom View")

 m_MyControl = (UserControl1) Rep.AddTab("C# Demo","ContDemo.UserControl1");

 else if(ItemName == "Show Button")

 m_MyControl.ShowButton();

 }

 }

(c) Sparx Systems 2022 Page 165 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Custom Docked Window

Custom docked windows can be added into the Enterprise Architect user interface. Once added, they can be shown and
docked in the same way as other built-in Enterprise Architect docked windows.

A custom docked window must be designed as an ActiveX Custom Control and inserted via the Automation Interface.
ActiveX Custom Controls can be created using most well-known programming tools, including Microsoft Visual Studio.
See the documentation provided by the relevant vendor on how to create a custom control to produce an OCX file.

Once the custom control has been created and registered on the target system, it can be added using the AddWindow()
method of the Repository object. While it is possible to call AddWindow() from any automation client, it is likely that
you would call it from an Add-In, and that the Add-In is defined in the same OCX that provides the custom view.

To view custom docked windows that have been added, select the 'Specialize > Add-Ins > Addin Windows' ribbon
option.

Custom docked windows can also be made visible by the automation client or Add-In using the ShowAddinWindow()
method, or hidden by using the HideAddinWindow() method.

C# Code Example

 public class Addin

 {

 UserControl1 m_MyControl;

 public void EA_Connect(EA.Repository Rep)

 {

 m_MyControl = (UserControl1) Rep.AddWindow

 ("C# Demo","ContDemo.UserControl1");

 }

 public object EA_GetMenuItems(EA.Repository Repository, string Location, string MenuName)

 {

 if(MenuName == "")

 return "-&C# Control Demo";

 else

 {

 String() ret = {"Show Window", "Show Button"};

 return ret;

 }

 }

 public void EA_MenuClick(EA.Repository Rep, string Location, string MenuName, string ItemName)

 {

 if(ItemName == "Show Window")

 Rep.ShowAddinWindow("C# Demo");

 else if(ItemName == "Show Button")

 m_MyControl.ShowButton();

 }

 }

(c) Sparx Systems 2022 Page 166 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

(c) Sparx Systems 2022 Page 167 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

MDG Add-Ins

MDG Add-Ins are specialized types of Add-In that have additional features and extra requirements, for Add-In authors
who want to contribute to Enterprise Architect's goal of Model Driven Generation.

One of the additional responsibilities of an MDG Add-In is to take ownership of a branch of an Enterprise Architect
model, which is done through the MDG_Connect event. Unlike general Add-In events, MDG Add-In events are only
sent to the Add-In that has taken ownership of an Enterprise Architect model branch on a particular workstation.

MDG Add-Ins identify themselves as such during EA_Connect by returning the string 'MDG'.

Unlike ordinary Add-Ins, responding to MDG Add-In events is not optional, and methods must be published for each of
the MDG Events.

(c) Sparx Systems 2022 Page 168 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

MDG Events

An MDG Add-In must respond to all MDG Events. These events usually identify processes such as Build, Run,
Synchronize, PreMerge and PostMerge, amongst others.

An MDG Link Add-In is expected to implement some form of forward and reverse engineering capability within
Enterprise Architect, and as such requires access to a specific set of events, all to do with generation, synchronization
and general processes concerned with converting models to code and code to models.

MDGAdd-In Events

Event

MDG_BuildProject

MDG_Connect

MDG_Disconnect

MDG_GetConnectedPackages

MDG_GetProperty

MDG_Merge

MDG_NewClass

MDG_PostGenerate

MDG_PostMerge

MDG_PreGenerate

MDG_PreMerge

MDG_PreReverse

MDG_RunExe

MDG_View

(c) Sparx Systems 2022 Page 169 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

MDG_BuildProject

Add-Ins can use MDG_BuildProject to handle file changes caused by generation. This function is called in response to a
user selecting the 'Execute > Source > Build > Build' ribbon option.

Respond to this event by compiling the project source files into a running application.

Syntax

Sub MDG_BuildProject (Repository As EA.Repository, PackageGuid As String)

The MDG_BuildProject function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

PackageGuid String

Direction: IN

Description: The GUID identifying the Enterprise Architect Package sub-tree that is
controlled by the Add-In.

Return Value

None.

(c) Sparx Systems 2022 Page 170 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

MDG_Connect

An Add-In uses MDG_Connect to handle a user driven request to connect a model branch to an external application. The
function is called when the user attempts to connect a particular Enterprise Architect Package to an as yet unspecified
external project. The Add-In calls the event to interact with the user to specify such a project.

The Add-In is responsible for retaining the connection details, which should be stored on a per-user or per-workstation
basis. That is, users who share a common Enterprise Architect model over a network should be able to connect and
disconnect to external projects independently of one another.

The Add-In should therefore not store connection details in an Enterprise Architect repository. A suitable place to store
such details would be:

 SHGetFolderPath(..CSIDL_APPDATA..)\AddinName

The PackageGuid parameter is the same identifier as is required for most events relating to the MDG Add-In. Therefore
it is recommended that the connection details be indexed using the PackageGuid value.

The PackageID parameter is provided to aid fast retrieval of Package details from Enterprise Architect, should this be
required.

Syntax

Function MDG_Connect (Repository As EA.Repository, PackageID as Long, PackageGuid As String) As Long

The MDG_Connect function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

PackageID Long

Direction: IN

Description: The PackageID of the Enterprise Architect Package the user has
requested to have connected to an external project.

PackageGuid String

Direction: IN

Description: The unique ID identifying the project provided by the Add-In when a
connection to a project branch of an Enterprise Architect model was first
established.

Return Value

Return a non-zero to indicate that a connection has been made·
Return a zero to indicate that the user has not nominated a project and connection should not proceed·

(c) Sparx Systems 2022 Page 171 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

MDG_Disconnect

Add-Ins can use MDG_Disconnect to respond to user requests to disconnect the model branch from an external project.

This function is called when the user attempts to disconnect an associated external project. The Add-In is required to
delete the details of the connection.

Syntax

Function MDG_Disconnect (Repository As EA.Repository, PackageGuid As String) As Long

The MDG_Disconnect function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

PackageGuid String

Direction: IN

Description: The GUID identifying the Enterprise Architect Package sub-tree that is
controlled by the Add-In.

Return Value

Return a non-zero to indicate that a disconnection has occurred, enabling Enterprise Architect to update the user·
interface

Return a zero to indicate that the user has not disconnected from an external project·

(c) Sparx Systems 2022 Page 172 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

MDG_GetConnectedPackages

Add-Ins can use MDG_GetConnectedPackages to return a list of current connections between Enterprise Architect and
an external application.

This function is called when the Add-In is first loaded, and is expected to return a list of the available connections to
external projects for this Add-In.

Syntax

Function MDG_GetConnectedPackages (Repository As EA.Repository) As Variant

The MDG_GetConnectedPackages function syntax contains this parameter.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Return Value

Returns an array of GUID strings representing individual Enterprise Architect Packages.

(c) Sparx Systems 2022 Page 173 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

MDG_GetProperty

MDG_GetProperty provides miscellaneous Add-In details to Enterprise Architect.

This function is called by Enterprise Architect to poll the Add-In for information relating to the PropertyName. This
event should occur in as short a duration as possible, as Enterprise Architect does not cache the information provided by
the function.

Values corresponding to these PropertyNames must be provided:

IconID - Return the name of a DLL and a resource identifier in the format #ResID, where the resource ID indicates·
an icon
 c:\program files\myapp\myapp.dlll#101

Language - Return the default language that Classes should be assigned when they are created in Enterprise·
Architect

HiddenMenus - Return one or more values from the MDGMenus enumeration to hide menus that do not apply to·
your Add-In
 if(PropertyName == "HiddenMenus")

 return mgBuildProject + mgRun;

Syntax

Function MDG_GetProperty (Repository As EA.Repository, PackageGuid As String, PropertyName As String) As
Variant

The MDG_GetProperty function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently-open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

PackageGuid String

Direction: IN

Description: The GUID identifying the Enterprise Architect Package sub-tree that is
controlled by the Add-In.

PropertyName String

Direction: IN

Description: The name of the property that is used by Enterprise Architect. See the
start of this topic for the possible values.

Return Value

See the start of this topic.

(c) Sparx Systems 2022 Page 174 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

MDG_Merge

Add-Ins can use MDG_Merge to jointly handle changes to both the model branch and the code project that the model
branch is connected to.

This event should be called whenever the user has asked to merge their model branch with its connected code project, or
whenever the user has established a new connection to a code project.

The purpose of this event is to make the Add-In interact with the user to perform a merge between the model branch and
the connected project.

Syntax

Function MDG_Merge (Repository As EA.Repository, PackageGuid As String, SynchObjects As Variant, SynchType
As String, ExportObjects As Variant, ExportFiles As Variant, ImportFiles As Variant, IgnoreLocked As String,
Language As String) As Long

The MDG_Merge function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

PackageGuid String

Direction: IN

Description: The GUID identifying the Enterprise Architect Package sub-tree that is
controlled by the Add-In.

SynchObjects Variant

Direction: OUT

Description: A string array containing a list of objects (Object ID format) to be
jointly synchronized between the model branch and the project.

See Object ID Format for the format of the Object IDs.

SynchType String

Direction: OUT

Description: The value determining the user-selected type of synchronization to
take place.

See Synchronize Type for a list of valid values.

ExportObjects Variant

Direction: OUT

Description: The string array containing the list of new model objects (in Object ID
format) to be exported by Enterprise Architect to the code project.

ExportFiles Variant

Direction: OUT

Description: A string array containing the list of files for each model object chosen

(c) Sparx Systems 2022 Page 175 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

for export by the Add-In.

Each entry in this array must have a corresponding entry in the ExportObjects
parameter at the same array index, so ExportFiles(2) must contain the filename of
the object by ExportObjects(2).

ImportFiles Variant

Direction: OUT

Description: A string array containing the list of code files made available to the
code project to be newly imported to the model.

Enterprise Architect imports each file listed in this array for import into the
connected model branch.

IgnoreLocked String

Direction: OUT

Description: A value indicating whether to ignore any files locked by the code
project (that is, 'True' or False').

Language String

Direction: OUT

Description: The string value containing the name of the code language supported
by the code project connected to the model branch.

Object ID Format

Each of the Object IDs listed in the 'SynchObjects' string arrays should have this format:

(@namespace)*(#class)*($attribute|%operation|:property)*

Return Value

Return a non-zero if the merge operation completed successfully·
Return a zero when the operation has been unsuccessful·

Merge

A merge consists of three major operations:

Export: where newly created model objects are exported into code and made available to the code project·
Import: where newly created code objects, Classes and such things are imported into the model·
Synchronize: where objects available both to the model and in code are jointly updated to reflect changes made in·
either the model, code project or both

Synchronize Type

The Synchronize operation can take place in one of four different ways. Each of these ways corresponds to a value
returned by 'SynchType':

(c) Sparx Systems 2022 Page 176 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

None: (SynchType' = 0) No synchronization is to be performed·
Forward: ('SynchType' = 1) Forward synchronization, between the model branch and the code project is to occur·
Reverse: ('SynchType = 2) Reverse synchronization, between the code project and the model branch is to occur·
Both: ('SynchType' = 3) Reverse, then Forward synchronizations are to occur·

(c) Sparx Systems 2022 Page 177 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

MDG_NewClass

Add-Ins can use MDG_NewClass to alter details of a Class before it is created.

This method is called when Enterprise Architect generates a new Class, and requires information relating to assigning the
language and file path. The file path should be passed back as a return value and the language should be passed back via
the language parameter.

Syntax

Function MDG_NewClass (Repository As EA.Repository, PackageGuid As String, CodeID As String, Language As
String) As String

The MDG_NewClass function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

PackageGuid String

Direction: IN

Description: The GUID identifying the Enterprise Architect Package sub-tree that is
controlled by the Add-In.

CodeID String

Direction: IN

Description: A string used to identify the code element before it is created.

Language String

Direction: OUT

Description: A string used to identify the programming language for the new Class.
The language must be supported by Enterprise Architect.

Return Value

Return a string containing the file path that should be assigned to the Class.

(c) Sparx Systems 2022 Page 178 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

MDG_PostGenerate

Add-Ins can use MDG_PostGenerate to handle file changes caused by generation.

This event is called after Enterprise Architect has prepared text to replace the existing contents of a file. Responding to
this event enables the Add-In to write to the linked application's user interface rather than modify the file directly.

When the contents of a file are changed, Enterprise Architect passes FileContents as a non-empty string. New files
created as a result of code generation are also sent through this mechanism, so the Add-Ins can add new files to the
linked project's file list.

When new files are created Enterprise Architect passes FileContents as an empty string. When a non-zero is returned by
this function, the Add-In has successfully written the contents of the file. A zero value for the return indicates to
Enterprise Architect that the file must be saved.

Syntax

Function MDG_PostGenerate (Repository As EA.Repository, PackageGuid As String, FilePath As String, FileContents
As String) As Long

The MDG_PostGenerate function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

PackageGuid String

Direction: IN

Description: The GUID identifying the Enterprise Architect Package sub-tree that is
controlled by the Add-In.

FilePath String

Direction: IN

Description: The path of the file Enterprise Architect intends to overwrite.

FileContents String

Direction: IN

Description: A string containing the proposed contents of the file.

Return Value

The return value depends on the type of event that this function is responding to (see introduction). This function is
required to handle two separate and distinct cases.

(c) Sparx Systems 2022 Page 179 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

MDG_PostMerge

MDG_PostMerge is called by Enterprise Architect after a merge process has been completed.

File save checking should not be performed with this function, but should be handled by MDG_PreGenerate,
MDG_PostGenerate and MDG_PreReverse.

Syntax

Function MDG_PostMerge (Repository As EA.Repository, PackageGuid As String) As Long

The MDG_PostMerge function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

PackageGuid String

Direction: IN

Description: The GUID identifying the Enterprise Architect Package sub-tree that is
controlled by the Add-In.

Return Value

Return a non-zero to indicate that the post-merge has been successful·
Return a zero if the post-merge process has failed·

Enterprise Architect assumes a non-zero return if this method is not implemented.

(c) Sparx Systems 2022 Page 180 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

MDG_PreGenerate

Add-Ins can use MDG_PreGenerate to deal with unsaved changes.

This function is called immediately before Enterprise Architect attempts to generate files from the model. A possible use
of this function would be to prompt the user to save unsaved source files.

Return Value

Return a zero to abort generation·
Return any other value to enable the generation to continue·

Syntax

Function MDG_PreGenerate (Repository As EA.Repository, PackageGuid As String) As Long

The MDG_PreGenerate function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

PackageGuid String

Direction: IN

Description: The GUID identifying the Enterprise Architect Package sub-tree that is
controlled by the Add-In.

(c) Sparx Systems 2022 Page 181 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

MDG_PreMerge

MDG_PreMerge is called after a merge process has been initiated by the user and before Enterprise Architect performs
the merge process.

This event is called after a user has performed their interactions with the merge screen and has confirmed the merge with
the OK button, but before Enterprise Architect performs the merge process using the data provided by the MDG_Merge
call, before any changes have been made to the model or the connected project.

This event is made available to provide the Add-In with the opportunity to generally set internal Add-In flags to augment
the MDG_PreGenerate, MDG_PostGenerate and MDG_PreReverse events.

File save checking should not be performed with this function, but should be handled by MDG_PreGenerate,
MDG_PostGenerate and MDG_PreReverse.

Syntax

Function MDG_PreMerge (Repository As EA.Repository, PackageGuid As String) As Long

The MDG_PreMerge function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model.

Poll its members to retrieve model data and user interface status information.

PackageGuid String

Direction: IN

Description: The GUID identifying the Enterprise Architect Package sub-tree that is
controlled by the Add-In.

Return Value

Return a zero to indicate that the merge process can not occur·
Return a non-zero if the merge process proceeds·

If this method is not implemented then it is assumed that a merge process is used.

(c) Sparx Systems 2022 Page 182 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

MDG_PreReverse

Add-Ins can use MDG_PreReverse to save file changes before they are imported into Enterprise Architect.

This function operates on a list of files that are about to be reverse-engineered into Enterprise Architect. If the user is
working on unsaved versions of these files in an editor, you could either prompt the user or save automatically.

Syntax

Sub MDG_PreReverse (Repository As EA.Repository, PackageGuid As String, FilePaths As Variant)

The MDG_PreReverse function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

PackageGuid String

Direction: IN

Description: The GUID identifying the Enterprise Architect Package sub-tree that is
controlled by the Add-In.

FilePaths String array

Direction: IN

Description: An array of filepaths pointed to the files that are to be reverse
engineered.

Return Value

None.

(c) Sparx Systems 2022 Page 183 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

MDG_RunExe

Add-Ins can use MDG_RunExe to run the target application.

This function is called when the user selects the 'Execute > Run > Start > Run' ribbon option.

Respond to this event by launching the compiled application.

Syntax

Sub MDG_RunExe (Repository As EA.Repository, PackageGuid As String)

The MDG_RunExe function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

PackageGuid String

Direction: IN

Description: The GUID identifying the Enterprise Architect Package sub-tree that is
controlled by the Add-In.

Return Value

None.

(c) Sparx Systems 2022 Page 184 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

MDG_View

Add-Ins can use MDG_View to display user specified code elements.

This function is called by Enterprise Architect when the user asks to view a particular code element. The Add-In can then
present that element in its own way, usually in a code editor.

Syntax

Function MDG_View (Repository As EA.Repository, PackageGuid As String, CodeID as String) As Long

The MDG_View function syntax contains these parameters.

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

PackageGuid String

Direction: IN

Description: The GUID identifying the Enterprise Architect Package sub-tree that is
controlled by the Add-In.

CodeID String

Direction: IN

Description: Identifies the code element in this format:

 <type>ElementPart<type>ElementPart...

where each element is proceeded with a token identifying its type:

 @ -namespace

 # - Class

 $ - attribute

 % - operation

For example, if a user has selected the m_Name attribute of Class1 located in
namespace Name1, the Class ID would be passed through in this format:

 @Name1#Class1%m_Name

Return Value

Return a non-zero value to indicate that the Add-In has processed the request·
Return a zero value for Enterprise Architect to employ the standard viewing process, which is to launch the·
associated source file

(c) Sparx Systems 2022 Page 185 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

Workflow Add-In Events

Enterprise Architect provides this set of four additional events that are sent only to workflow Add-Ins.

To use these the Workflow Add-In must be initialized with EA_Connect set to type: "Workflow". For more details see
the EA_Connect Help topic.

Workflow Add-In Events

Event

EA_AllowPropertyUpdate

This event is sent to workflow Add-Ins after a user has changed a built-in property value.

EA_AllowTagUpdate

This event is sent to workflow Add-Ins after a user has changed a Tagged Value.

EA_CanEditProperty

This event is sent to workflow Add-Ins when a property is being displayed that allows the property to block all
edits.

EA_CanEditTag

This event is sent to workflow Add-Ins when a Tagged Value is being displayed that allows the property to block all
edits.

(c) Sparx Systems 2022 Page 186 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_AllowPropertyUpdate

This event is sent to workflow Add-Ins after a user has changed a built-in property value.

Syntax

Function EA_AllowPropertyUpdate (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains these EventProperty objects describing the requested
property update:

Type: A string value corresponding to Element.Type·
Stereotype: A string value corresponding to Element.Stereotype·
Property: The name of the property field to enable or disable·
OldValue: The previous value of the property·
NewValue: The new value of the property·

Return Value

Return False to prevent this change to the described property·
Return True to allow this change·

(c) Sparx Systems 2022 Page 187 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_AllowTagUpdate

This event is sent to Workflow Add-Ins after a user has changed a Tagged Value.

Syntax

Function EA_AllowTagUpdate (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains these EventProperty objects describing the requested Tagged
Value update:

Type: A string value corresponding to Element.Type·
Stereotype: A string value corresponding to Element.Stereotype·
TagName: The name of the Tagged Value field to enable or disable·
OldValue: The previous value of the tag·
NewValue: The new value of the tag·

Return Value

Return False to prevent this change to the described Tagged Value·
Return True to allow this change·

(c) Sparx Systems 2022 Page 188 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_CanEditProperty

This event is sent to Workflow Add-Ins when a property is being displayed that allows the property to block all edits.

Syntax

Function EA_CanEditProperty (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains these EventProperty objects describing the property:

Type: A string value corresponding to Element.Type·
Stereotype: A string value corresponding to Element.Stereotype·
PropertyName: The name of the property field to enable or disable·

Return Value

Return False to prevent all edits to the described property·
Return True to allow changes·

(c) Sparx Systems 2022 Page 189 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

EA_CanEditTag

This event is sent to Workflow Add-Ins when a Tagged Value is being displayed that allows the property to block all
edits.

Syntax

Function EA_CanEditTag (Repository As EA.Repository, Info As EA.EventProperties) As Boolean

Parameter Type

Repository EA.Repository

Direction: IN

Description: An EA.Repository object representing the currently open Enterprise
Architect model. Poll its members to retrieve model data and user interface status
information.

Info EA.EventProperties

Direction: IN

Description: Contains these EventProperty objects describing the Tagged Value:

Type: A string value corresponding to Element.Type·
Stereotype: A string value corresponding to Element.Stereotype·
TagName: The name of the tag to enable or disable·

Return Value

Return False to prevent all edits to the described Tagged Value·
Return True to allow changes·

(c) Sparx Systems 2022 Page 190 of 191 Created with Enterprise Architect

Enterprise Architect Add-In Model 3 October, 2022

(c) Sparx Systems 2022 Page 191 of 191 Created with Enterprise Architect

	Enterprise Architect Add-In Model
	The Add-In Manager
	Create and Deploy Add-Ins
	Create Add-Ins
	Define Menu Items
	Deploy Add-Ins
	Tips and Tricks

	Add-In Search
	EA_SampleSearch
	XML Format (Search Data)

	Add-In Events
	EA_OnAddinPropertiesTabChanging
	EA_Connect
	EA_Disconnect
	EA_GetMenuItems
	EA_GetMenuState
	EA_GetRibbonCategory
	EA_MenuClick
	EA_OnOutputItemClicked
	EA_OnOutputItemDoubleClicked
	EA_ShowHelp

	Broadcast Events
	Add-In License Management Events
	EA_AddinLicenseValidate
	EA_AddinLicenseGetDescription
	EA_GetSharedAddinName

	Custom Table Events
	EA_OnCustomTableBeginEdit
	EA_OnCustomTableEndEdit
	EA_OnCustomTableSelectionChanged
	EA_OnCustomTableCellUpdated

	Schema Composer Events
	EA_GenerateFromSchema
	EA_GetProfileInfo
	EA_IsSchemaExporter

	Compartment Events
	EA_QueryAvailableCompartments
	EA_GetCompartmentData

	Context Item Events
	EA_OnContextItemChanged
	EA_OnContextItemDoubleClicked
	EA_OnNotifyContextItemModified

	EA_FileClose
	EA_FileNew
	EA_FileOpen
	EA_OnPostCloseDiagram
	EA_OnPostInitialized
	EA_OnPostOpenDiagram
	EA_OnPostTransform
	EA_OnPreExitInstance
	EA_OnRetrieveModelTemplate
	EA_OnTabChanged
	EA_LoadWindowManager
	Model Validation Events
	EA_OnInitializeUserRules
	EA_OnStartValidation
	EA_OnEndValidation
	EA_OnRunElementRule
	EA_OnRunPackageRule
	EA_OnRunDiagramRule
	EA_OnRunConnectorRule
	EA_OnRunAttributeRule
	EA_OnRunMethodRule
	EA_OnRunParameterRule
	Model Validation Example

	Post-New Events
	EA_OnPostNewElement
	EA_OnPostNewConnector
	EA_OnPostNewDiagram
	EA_OnPostNewDiagramObject
	EA_OnPostNewAttribute
	EA_OnPostNewMethod
	EA_OnPostNewPackage
	EA_OnPostNewGlossaryTerm

	Pre-Deletion Events
	EA_OnPreDeleteElement
	EA_OnPreDeleteAttribute
	EA_OnPreDeleteMethod
	EA_OnPreDeleteConnector
	EA_OnPreDeleteDiagram
	EA_OnPreDeleteDiagramObject
	EA_OnPreDeletePackage
	EA_OnPreDeleteGlossaryTerm

	Pre New-Object Events
	EA_OnPreNewElement
	EA_OnPreNewConnector
	EA_OnPreNewDiagram
	EA_OnPreNewDiagramObject
	EA_OnPreDropFromTree
	EA_OnPreNewAttribute
	EA_OnPreNewMethod
	EA_OnPreNewPackage
	EA_OnPreNewGlossaryTerm

	Tagged Value Events
	EA_OnAttributeTagEdit
	EA_OnConnectorTagEdit
	EA_OnElementTagEdit
	EA_OnMethodTagEdit

	Technology Events
	EA_OnInitializeTechnologies
	EA_OnPreActivateTechnology
	EA_OnPostActivateTechnology
	EA_OnPreDeleteTechnology
	EA_OnDeleteTechnology
	EA_OnImportTechnology

	Technology Rules
	EARules_Initialize
	Diagram Appearance Rule Events
	EARules_ClosePartitionName
	EARules_ElementDisplayName
	EARules_GetCompartmentItem
	EARules_GetCompartmentName
	EARules_GetNameUnderline
	EARules_GetPropertyString
	EARules_GetShapeScript
	EARules_ShowStereotype
	EARules_StereotypeDisplayName

	User Interface Rule Events
	EARules_AllowNesting
	EARules_AppendChildDiagrams
	EARules_AppendChildElements
	EARules_CanOverrideStereotype
	EARules_CanProxy
	EARules_CanReparent
	EARules_CreateModel
	EARules_EnableElementProperty
	EARules_ForceLength
	EARules_GetEquivalentDiagram
	EARules_IsAdjustable
	EARules_PropagateStereotype
	EARules_ShowElementProperty
	EARules_ShowFrame
	EARules_ShowParentFrame

	Custom Views
	Create a Custom View

	Custom Docked Window
	MDG Add-Ins
	MDG Events
	MDG_BuildProject
	MDG_Connect
	MDG_Disconnect
	MDG_GetConnectedPackages
	MDG_GetProperty
	MDG_Merge
	MDG_NewClass
	MDG_PostGenerate
	MDG_PostMerge
	MDG_PreGenerate
	MDG_PreMerge
	MDG_PreReverse
	MDG_RunExe
	MDG_View

	Workflow Add-In Events
	EA_AllowPropertyUpdate
	EA_AllowTagUpdate
	EA_CanEditProperty
	EA_CanEditTag

