
Build & Debug

Enterprise Architect

User Guide Series

Author: Sparx Systems

Date: 30/06/2017

Version: 1.0

CREATED WITH

Table of Contents

Build & Debug 4
Analyzer Scripts 6

Managing Analyzer Scripts 8
Analyzer Script Editor 11
Build Scripts 13
Cleanup Script 15
Debug Script 16

Operating System Specific Requirements 17
UAC-Enabled Operating Systems 18
WINE Debugging 19

Java 20
General Setup for Java 21
Advanced Techniques 23

Attach to Virtual Machine 24
Internet Browser Java Applets 25

Working with Java Web Servers 26
JBOSS Server 28
Apache Tomcat Server 29
Apache Tomcat Windows Service 30

.NET 31
General Setup for .NET 32
Debugging an Unmanaged Application 33
Debug COM Interop 34
Debug ASP .NET 35

The PHP Debugger 36
PHP Debugger - System Requirements 39
PHP Debugger Checklist 40

The GNU Debugger (GDB) 42
The Android Debugger 44
Java JDWP Debugger 47
Tracepoint Output 50
Workbench Setup 51

Microsoft C++ and Native (C, VB) 52
General Setup 53
Debug Symbols 55

Test Scripts 56
Run Script 58
Deploy Script 59
Testpoints Output 61
Recording Scripts 62

Build Application 64
Locate Compiler Errors in Code 65

Debugging 66
Run the Debugger 68
Breakpoint and Marker Management 71

Setting Code Breakpoints 73
Trace Statements 74

Break When a Variable Changes Value 76
Trace When Variable Changes Value 79
Detecting Memory Address Operations 80
Breakpoint Properties 82
Failure to Bind Breakpoint 84

Debug a Running Application 85
View the Local Variables 86

View Content Of Long Strings 89
View Debug Variables in Code Editors 91
Variable Snapshots 92

Actionpoints 94
View Variables in Other Scopes 98

View Elements of Array 99
View the Call Stack 100

Create Sequence Diagram of Call Stack 102
Inspect Process Memory 104
Show Loaded Modules 105
Process First Chance Exceptions 106
Just-in-time Debuger 107

User Guide - Build & Debug 30 June, 2017

Build & Debug

Enterprise Architect builds on top of its already exceptional code generation, diagramming and design capabilities with a
complete suite of tools to build, debug, visualize, record, test, profile and otherwise construct and verify software
applications. The toolset is intimately connected to the modeling and design capabilities and provides a unique and
powerful means of constructing software from a model and keeping model and code in sync.

Enterprise Architect lets you define 'Analyzer Scripts' linked to Model Packages that describe how an application will be
compiled, which debugger to use and other related information such as simulation commands. The Analyzer Script is the
core configuration item that links your code to the build, debug, test, profile and deploy capabilities within Enterprise
Architect.

As a measure of how competent the toolset is, it should be noted that Enterprise Architect is in fact built, debugged,
profiled, tested and otherwise constructed fully within the Enterprise Architect development environment. Many of the
advanced debugging tools such as 'Action Points' have been developed to solve problems inherent in the construction of
large and complex software applications (such as Enterprise Architect) and are routinely used on a daily basis by the
Sparx Systems development team.

It is recommended that new users take the time to fully understand the use of the Analyzer Scripts and how they tie the
model to the code and to the compilers and other tools necessary for building software.

In addition to the standard built-in tools, it is also possible to use the Visual Studio and Eclipse link tools built in to
version 12 and above of Enterprise Architect to couple design and modeling capabilities with these IDEs.

Integrating Model and Code

Model Driven Engineering is a modern approach to software development and promises greater productivity and higher
quality code, resulting in systems getting to market faster and with fewer faults. What makes this approach compelling is
the ability for the architecture and the design of a system to be described and maintained in a model, and then generated
to programming code and schemas that can be synchronized with and visualized within the model.

Enterprise Architect's Model Driven Development Environment (MDDE) supports this approach and provides a set of
flexible tools to increase productivity and reduce errors. These include the ability to define the architecture and design in
models, generate code from these models, synchronize the code with the models and maintain the code in sophisticated
code editors. Source code or binaries can also be imported, and users can record and document pre-existing or recently
developed code. The Analyzer Script tool helps you to describe how to build, debug, test and deploy an application.

Facility Description

Model Driven
Development

Model Driven Development provides a more robust, accessible and faster
development cycle than traditional coding-driven cycles.

A well constructed model, intimately linked with source code build, run, debug, test
and deploy capabilities provides a rich, easily navigated and easily understood
target architecture. Traceability, linkage to Use Cases, Components and other
model artifacts, plus the ability to readily record and document pre-existing or
recently developed code, make Enterprise Architect's development environment
uniquely powerful.

Enterprise Architect incorporates industry standard intelligent editing, debuggers
and modeling languages.

The Model Driven
Development Environment

The MDDE provides tools to design, visualize, build and debug an application:

(c) Sparx Systems 2015 - 2017 Page 4 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

(MDDE) UML technologies and tools to model software·
Code generation tools to generate/reverse engineer source code·
Tools to import source code and binaries·
Code editors that support different programming languages·
Intelli-sense to aid coding·
Analyzer scripts that enable a user to describe how to build, debug, test and·
deploy the application

Integration with compilers such as Java, .Net, Microsoft C++·
Debugging capabilities for Java, .NET, Microsoft C++ and others·
Advanced visualization, recording, inspection, testing and profiling capabilities·

(c) Sparx Systems 2015 - 2017 Page 5 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Analyzer Scripts

Analyzer Scripts are used by the Execution Analyzer. You do not need to worry about creating these. They are not the
same type of script as Javascript or PHP, but are managed using a familiar user interface - a tree view - and you can
quickly locate the feature to change. Analyzer Scripts can be shared by users of a community model and are easily
imported and exported as xml files.

A single project can have multiple configurations and these can be found grouped together in the Analyzer window.

(c) Sparx Systems 2015 - 2017 Page 6 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Each Analyzer Script is defined for a Package, so projects can co-exist quite happily. In many organizations, the
procedures to manage systems are distributed, and vary from individual to individual and group to group. Analyzer
Scripts in an Enterprise Architect model can provide some peace of mind to these organizations, by trusting a single,
shared and accountable procedure for building and deploying any variety of configurations. All aspects of a script are
optional. You can, for instance, debug without one. They can however, in a few lines, enable these powerful features:

Building·
Testing·
Debugging·
Recording·
Execution·
Deployment·
Simulation·

(c) Sparx Systems 2015 - 2017 Page 7 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Managing Analyzer Scripts

The Execution Analyzer window enables you to manage all Analyzer scripts in the model. You can use the window
toolbar buttons or script context menu options to control script tasks. Scripts are listed by Package; the list only shows
Packages that have Analyzer scripts defined against them. Each user can set their own active script, independent of other
users of the same model; one user activating a script does not impact the currently active scripts for other users or affect
the scripts available to them. The active script governs the behavior of the Execution Analyzer; when choosing the build
command from a menu, for example, or clicking the Debug button on a toolbar.

Access

Ribbon Execute > Analyze > Analyzer Scripts

Context Menu Project Browser | Right-click on Package | Execution Analyzer

Keyboard Shortcuts Shift+F12

Toolbar Options:

Toolbar Button Action

Quick access to the Analyzer core windows such as Call Stack or Local Variables,
plus the power features:

Profiling·
Recording·
Testpoints·
Simulation·

Create and edit a new Analyzer Script for a Package.

Export Scripts.

Export one or more Analyzer Scripts to an XML file, which can be used to import
the scripts into another model.

The 'Execution Analyzer: Export' dialog displays from which you select the script
or scripts to export, followed by a prompt for the target file name and location.

Import Scripts.

Import one or more Analyzer Scripts into the current model from a previously
exported XML file.

The 'Browse Project' dialog displays, on which you select the Package into which to
import the scripts, followed by a prompt for the source filename and location.

Execute the 'Build' command of the active script.

(c) Sparx Systems 2015 - 2017 Page 8 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Cancel the 'Build' command currently in progress.

Execute the 'Run' command of the active script.

Execute the 'Test' command of the active script.

Execute the 'Deploy' command of the active script.

Display the Help topic for this window.

Context Menu Options:

Right-click on the required script or Package to display the context menus.

Option Action

Add New Script Add a new script to the selected Package.

The Execution Analyzer window displays, showing the 'Build' page.

Paste Script Paste a copied script from the Enterprise Architect clipboard into the selected
Package.

You can paste the copied script several times; each copy has the suffix 'Copy'.

To rename the copied script, press F2 and overtype the script name.

Export Scripts Export scripts from the selected Package.

The 'Execution Analyzer: Export' dialog displays, from which you select the script
or scripts to export, followed by a prompt for the target filename and location.

Import Scripts Import scripts from a .XML file into the selected Package.

A prompt displays for the source filename and location.

Select In Project Browser Highlight the selected Package in the Project Browser.

Display the Project Browser, which is now expanded to show the highlighted
Package.

Build Execute the 'Build' command of the selected script.

Clean Execute the 'Clean' command of the selected script.

Rebuild Execute the 'Clean' and 'Build' commands of the selected script.

Debug Execute the 'Debug' command of the selected script.

Run Execute the 'Run' command of the selected script.

Test Execute the 'Test' command of the selected script.

(c) Sparx Systems 2015 - 2017 Page 9 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Deploy Execute the 'Deploy' command of the selected script.

Start Simulation Start the simulation referenced by the 'Analyzer Script Simulation' page.

Edit Open the selected script in the 'Analyzer Scripts Editor'.

Copy Copy the selected script to the Enterprise Architect clipboard.

Paste Paste the most-recently copied script to the same Package as the selected script.

You can paste the copied script several times; each copy has the suffix 'Copy'.

To rename the copied script, press F2 and overtype the script name.

Delete Delete the selected script; there is no prompt for confirmation.

To delete a Package from the Execution Analyzer window, delete the scripts from
the Package. When the last script is deleted, the Package is no longer listed.

Set as Model Default Set the selected script as the default script for the model.

The icon to the left of the script changes color; any previous model default reverts
to normal.

Help Display the Help topic for this window.

(c) Sparx Systems 2015 - 2017 Page 10 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Analyzer Script Editor

The Analyzer Script Editor is a straightforward user interface with a tree view on the left for easy navigation of features,
and a content view on the right.

Access

On the 'Execution Analyzer' dialog, either:

Double-click on a script to edit it or·
Right-click on the script and select the 'Edit' option·

Ribbon Execute > Analyze > Analyzer Scripts

Context Menu Project Browser | Right-click on Package | Execution Analyzer

Keyboard Shortcuts Shift+F12

Execution Analyzer Scripts

Task - Page Action

Build - Build Enter script or command to build the application. This can be an Apache Ant or
Visual Studio command, but can also be tailored depending on your development
environment. Note: Remember to select a parser to get directly to the source code
in the event of any errors. The parser field is on the same page and offers support

(c) Sparx Systems 2015 - 2017 Page 11 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

for many languages.

Build - Clean Enter script or command to clean the previous build. This is the command line you
would normally issue to build your system. This can be an Apache Ant or Visual
Studio command depending on your development environment.

Test - Test Enter script or command to test the application. This is typically where an nUnit or
jUnit invocation might be configured, but it just as easily could be any procedure or
program.

Test - Testpoints Specify where the output from a Testpoint run is sent.

Debug - Platform Specify the debugging platform, the application to be debugged, and the mode of
debugging (attach to process or run).

Debug - Tracepoints Specify where the output from Tracepoints encountered during a debug session are
sent.

Debug - Workbench For .NET projects, the assembly to load. Not required for Java.

Run Enter a script or command to run the application.

Deploy Enter a script or command to deploy the project. Build your jar file. Deploy to your
device, an emulator or Tomcat server.

Publish a web site. Its up to you.

Recording Does your Sequence diagram look like the national grid? Reduce the clutter with
filters. Filters define exclusion zones in your code base that can cut down
dramatically on any 'noise' that is being recorded. Even accurate noise is not always
helpful.

Simulation Complete the configuration for Simulation Control.

(c) Sparx Systems 2015 - 2017 Page 12 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Build Scripts

The 'Build' page enables you to enter commands to build your project. You can use Enterprise Architect Local Paths and
environment variables in composing your command line(s). You can choose to create your own build script, entering
various shell commands. You can also choose to simply run an external program or batch file such as an Ant script.

Access

On the Execution Analyzer window, either:

Locate and double-click on the required script and select the 'Build > Build' page or·

Click on in the window Toolbar and select the 'Build > Build' page·

Ribbon Execute > Analyze > Analyzer Scripts

Context Menu Project Browser | Right-click on Package | Execution Analyzer

Keyboard Shortcuts Shift+F12

Execute Command As:

Batch File

Use this option to create a shell script. The script is executed in a system command window. Environment variables can
be accessed by commands in this script.

Process

Use this option to run a single program.

The command should specify the path to the program, plus any command line arguments. If the path or arguments
contain spaces surround them with quotes; for example: "c:\program files (x86)\java\bin\javac.exe"

Build Script

Write your script in the large text box, using the windows shell commands; the format and content of this section
depends on the actual compiler you use to build your project. Here are some examples:

 Visual Studio:

 "C:\Program Files (x86)\Microsoft Visual Studio 9.0\Common7\IDE\devenv.com" /Rebuild Debug RentalSystem.sln

 Visual Studio using a Local Path:

 "%VsCompPath%\devenv.exe" /build Debug Subway.sln

 Java:

 C:\Program Files (x86)\Java\jdk1.6.0_22\bin\javac.exe" -g -cp "%classpath%;." %r*.java

 Java using a Local Path:

(c) Sparx Systems 2015 - 2017 Page 13 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

 "%JAVA%\bin\javac.exe" -g -cp "%classpath%;." %r*.java

Wildcard Java builds %r

Source files in sub folders can be built using the %r token. The token has the effect of causing a recursive execution of
the same command on any files in all sub folders. See the example above.

Default Directory

The default directory path in which the build script process will run.

Parse Output

This enables you to select a method for automatically parsing the compiler output.

If you select this option, output from the script is logged in the System Output window; Enterprise Architect parses the
output according to the syntax you specify.

Notes

To execute the Build Script, click on the Package in the Project Browser and either:

Right-click on any Toolbar and select 'Analyzer Toolbars | Build', or·
Press Ctrl+Shift+F12 or·
Select the 'Execute > Run > Build > Build' ribbon option·

(c) Sparx Systems 2015 - 2017 Page 14 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Cleanup Script

Incremental builds are the practice of only building those assets that have changed in some way. There are times,
however, when there is cause to build everything again from scratch. This command is used for those occasions, to
remove the binaries and intermediary files associated with a particular build or configuration. The project can then be
rebuilt. When you execute the 'Rebuild' menu option on a script, the command(s) you specify in this field are executed,
followed immediately by the 'Build' command from the same Analyzer script. Some compilers have options do this for
you. Visual studio for example has the "/clean" command line switch.

Access

On the Execution Analyzer window, either:

Locate and double-click on the required script and select the 'Build > Clean' page or·

Click on in the window Toolbar and select the 'Build > Clean' page·

Ribbon Execute > Analyze > Analyzer Scripts

Context Menu Project Browser | Right-click on Package | Execution Analyzer

Keyboard Shortcuts Shift+F12

Aspects

Aspect Detail

Action Enter the command to be executed when you select 'Clean' from the script context
menu.

Example devenv.com /Clean Debug MyProject.sln

(c) Sparx Systems 2015 - 2017 Page 15 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Debug Script

The process of configuring the Debug section of an Analyzer Script is usually a one time affair that rarely has to be
revisited. So once you have your script working, you probably wont have to think about it again. The details you provide
are not complicated, yet doing so provides access to a great many benefits. Here are some:

Debugging·
Sequence diagram recording,·
Executable StateMachine execution and simulation·
Test domain authoring and recording·
Behavioral profiling of processes on a variety of runtimes.·

All you need to do is select the appropriate platform and enter some basic details. The debugger platforms you can use
include:

Java·
Java Debug Wire Protocol (JDWP)·
Microsoft .NET Debugger·
Microsoft Native Code Debugger (C++, C, VB)·
The PHP Debugger·
The GNU Debugger (GDB)·

Access

Ribbon Code > Build and Run > Analyzer > Analyzer Scripts

Execute > Analyze > Analyzer Scripts

Context Menu Right-click on Package | Execution Analyzer

Keyboard Shortcuts Shift+F12

Notes

An Analyzer script is not necessary for debugging Enterprise Architect model scripts (JavaScript, VBScript etc.)·

(c) Sparx Systems 2015 - 2017 Page 16 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Operating System Specific Requirements

The Enterprise Architect debugger is able to operate on a number of different platforms. This table describes the
individual requirements for debugging on each platform.

Platforms

Platform Detail

Microsoft .NET Microsoft™ .NET Frameworks 4.0, 3.5 and 2.0·
Language support: C, C#, C++, J#, VB.NET·

Java Java SE Development Kit from Oracle™ (version 5.0 minimum) (either 32-bit·
or 64-bit JDK)

The Java Platform Debugger Architecture (JPDA) was introduced in Java SE
version 5.0. The JPDA provides two protocols for debugging; the Java Virtual
Machine Tools Interface (JVMTI), and the Java Debug Wire Protocol (JDWP).

Enterprise Architect's debugger supports both protocols.

GNU Debugger (GDB) Enterprise Architect supports debugging using the GNU Debugger, which enables
you to debug your applications under Linux either locally or remotely.

Requires GDB version 7.0 or above.

Source code file path must not contain spaces.

Windows for Native
Applications

Enterprise Architect supports debugging native code (C, C++ and Visual Basic)
compiled with the Microsoft™ compiler where an associated PDB file is available.

PHP Enterprise Architect enables you to perform local and remote debugging of PHP
scripts in web servers.

Requires web server to be configured to support PHP.

Requires PHP to be configured to support XDebug PHP (3rd party PHP extension)

Notes

The debugging facility is available in the Enterprise Architect Professional Edition and above·
Debugging under Windows Vista (x64) - if you encounter problems debugging with Enterprise Architect on a 64-bit·
platform, you should build a platform specific configuration in Visual Studio; that is, do not specify the AnyCPU
configuration, specify either Win32 or x64 explicitly

(c) Sparx Systems 2015 - 2017 Page 17 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

UAC-Enabled Operating Systems

The Microsoft operating systems Windows Vista and Windows 7 provide User Account Control (UAC) to manage
security for applications.

The Enterprise Architect Visual Execution Analyser is UAC-compliant, and users of UAC-enabled systems can perform
operations with the Visual Execution Analyser and related facilities under accounts that are members of only the Users
group.

However, when attaching to processes running as services on a UAC-enabled operating system, it might be necessary to
log in as an Administrator.

Log in as Administrator

Step Action

1 Before you run Enterprise Architect, right-click on the Enterprise Architect icon on the desktop and select
the Run as administrator option.

Alternatively

Edit or create a link to Enterprise Architect and configure the link to run as an Administrator.

Step Action

1 Right-click on the Enterprise Architect icon and select the 'Properties' option.

The Enterprise Architect 'Properties' dialog displays.

2 Click on the Advanced button.

The 'Advanced Properties' dialog displays.

3 Select the 'Run as administrator' checkbox.

4 Click on the OK button, and again on the 'Enterprise Architect Properties' dialog.

(c) Sparx Systems 2015 - 2017 Page 18 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

WINE Debugging

Configure Enterprise Architect to debug under WINE

Step Action

1 At the command line, run $ winecfg.

2 Set the library overrides for dbghelp to (native, builtin), and accept the warning about overriding this
DLL.

3 Set dbghelp to native by using winecfg.

4 Copy the application source code plus executable(s) to your bottle.

The path must be the same as the compiled version; that is:

If Windows source = C:\Source\SampleApp, under Crossover it must be

C:\Source\SampleApp

5 Copy any Side-By-Side assemblies that are used by the application.

Access Violation Exceptions

Due to the manner in which WINE handles direct drawing and access to DIB data, an additional option is provided on
the drop-down menu on the Debug window toolbar to ignore or process access violation exceptions thrown when your
program directly accesses DIB data.

Select this option to catch genuine (unexpected) access violations; deselect it to ignore expected violations.

As the debugger cannot distinguish between expected and unexpected violations, you might have to use trial and error to
capture and inspect genuine program crashes.

Notes

If WINE crashes, the back traces might not be correct·
If you are using MFC remember to copy the debug side-by-side assemblies to the C:\window\winsxs directory·
To add a windows path to WINE, modify the Registry entry:·
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manager\Environment

(c) Sparx Systems 2015 - 2017 Page 19 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Java

This section describes how to set up Enterprise Architect for debugging Java applications and Web Servers.

(c) Sparx Systems 2015 - 2017 Page 20 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

General Setup for Java

The general setup for debugging Java Applications supports two options:

Debug an Application·
Attach to an application that is running·

Option 1 - Debug an Application

Field Action

Debugger Select Java.

x64 Select this checkbox if you are debugging a 64-bit application.

Deselect the checkbox if you are debugging a 32-bit application.

Mode Select Run.

Default Directory This path is added to the class path property when the Java Virtual Machine is
created.

Application Class Identify the fully qualified Class name to debug; the Class must have a method
declared with this signature:

 public static void main(String());

Command Line Arguments Specify any parameters to be passed to the main method of the Application Class
above.

Parameters containing spaces should be surrounded with double quotes.

Java Virtual Machine
Options

Specify command line options for Virtual Machine creation.

You also must provide a parameter (JRE) as the path to be searched for the jvm.dll;
this is the DLL supplied as part of the Java runtime environment or Java JDK from
Sun MicrosystemsTM.

The JRE parameter can be either:

An Enterprise Architect-defined Local Path·
An absolute file path (with no double quotes) to the installation folder of the·
Java JDK to be used for debugging

The JRE parameter must point to the installation folder for the Java JDK. A JDK
installation is necessary for debugging to succeed. The JRE should not point to the
installation of the public Java Runtime Environment, if that is installed.
Environment variables can be used when specifying the VM startup options, such
as classpath.

For example, using:

An Enterprise Architect Local Path JAVA and an environment variable·
classpath:

(c) Sparx Systems 2015 - 2017 Page 21 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Or an absolute path to the JDK installation directory and an environment·
variable classpath:

In these two examples, the debugger will create a virtual machine using the JDK
located at the value of the JRE parameter.

If no classpath is specified, the debugger always creates the virtual machine with a
class path property equal to any path contained in the environment variable plus the
path entered in the default working directory of this script.

If source files and .class files are located under different directory trees, the
classpath property MUST include both root path(s) to the source and root path(s) to
binary class files.

Option 2 - Attach to Virtual Machine

There is very little to specify when attaching to a VM; however, the VM must have the Sparx Systems debugging agent
loaded.

Field Action

Debugger Select Java

Mode Select Attach to Virtual Machine

(c) Sparx Systems 2015 - 2017 Page 22 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Advanced Techniques

In addition to the standard Java debugging techniques, you can:

Attach to Virtual Machine·
Internet Browser Java Applets·

(c) Sparx Systems 2015 - 2017 Page 23 of 108 Created with Enterprise Architect

http://www.sparxsystems.com/enterprise_architect_user_guide/13.5/visual_execution_analysis/attach_to_vm.html
http://www.sparxsystems.com/enterprise_architect_user_guide/13.5/visual_execution_analysis/debug_java_applets_in_internet.html

User Guide - Build & Debug 30 June, 2017

Attach to Virtual Machine

You can debug a Java application by attaching to a process that is hosting a Java Virtual Machine; you might want to do
this for attaching to a webserver such as Tomcat or JBOSS.

The Java Virtual Machine Tools Interface from Sun Microsystems is the API used by Enterprise Architect; it allows a
debugging agent to be specified when the JVM is created.

To debug a running JVM from Enterprise Architect, the Sparx Systems' debugging agent must have been specified as a
startup option to the JVM when it was started; how this is accomplished for products such as Tomcat and JBOSS should
be researched from that product's own documentation.

For java.exe, the command line option to load the Enterprise Architect debugging agent could be (depending on your
environment):

-agentpath:"c:\program files\sparx systems\ea\VEA\x86\SSJavaProfiler32"·
-agentpath:"c:\program files (x86)\sparx systems\ea\VEA\x86\SSJavaProfiler32"·
-agentpath:"c:\program files (x86)\sparx systems\ea\VEA\x64\SSJavaProfiler64"·

The appropriate option will depend on your operating system and whether you are working on a 32-bit application or a
64-bit application.

Alternatively, if you add the appropriate VEA directory to your PATH environment variable you can choose to use:

-agentlib:SSJavaProfiler32·
-agentlib:SSJavaProfiler64·

It is not necessary to configure an Analyzer Script when you attach to a Virtual Machine; you can just use the Attach
button on one of the Analyzer toolbars.

If you configure an Analyzer Script, there are only two things that must be selected:

Select 'Java' as the debugging platform·
Choose the 'Attach to Virtual Machine' option·

(c) Sparx Systems 2015 - 2017 Page 24 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Internet Browser Java Applets

This topic describes the configuration requirements and procedure for debugging Java Applets running in a browser from
Enterprise Architect.

Attach to the browser process hosting the Java Virtual Machine (JVM) from
Enterprise Architect

Step Action

1 Ensure binaries for the applet code to be debugged have been built with debug information.

2 Configure the JVM using the Java Control Panel.

3 In the Java Applet Runtime Settings panel, click on the View button.

4 On the installed version to use, include one of these options in the 'Runtime Parameters' field, depending
on your environment and whether you are working on a 32-bit application or a 64-bit application:

 -agentpath:"c:\program files\sparx systems\ea\VEA\x86\SSJavaProfiler32"

 -agentpath:"c:\program files (x86)\sparx systems\ea\VEA\x86\SSJavaProfiler32"

 -agentpath:"c:\program files (x86)\sparx systems\ea\VEA\x64\SSJavaProfiler64"

5 In this field add the required Class paths.

At least one of these paths should include the root path of the source files to use in debugging.

6 Set breakpoints.

7 Launch the browser.

8 Attach to the browser process from Enterprise Architect.

(c) Sparx Systems 2015 - 2017 Page 25 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Working with Java Web Servers

If you are debugging Java web servers such as JBOSS and Apache Tomcat (both Server configuration and Windows
Service configuration) in Enterprise Architect, apply these configuration requirements and procedures.

Note: The debug and record features of the Visual Execution Analyzer are not supported for the Java server platform
'Weblogic' from Oracle.

Attach to process hosting the Java Virtual Machine from Enterprise Architect

Step Action

1 Build binaries for the web server code to be debugged, with debug information.

2 Launch the server with the 'Virtual Machine startup' option, described in Server Configuration.

3 Import source code into the Enterprise Architect Model, or synchronize existing code.

4 Set breakpoints.

5 Launch the client.

6 Attach to the process from Enterprise Architect.

Server Configuration

The configuration necessary for the web servers to interact with Enterprise Architect must address these two essential
points:

Any VM to be debugged, created or hosted by the server must have the Sparx Systems Agent command line option·
specified or in the VM startup option (that is:
 -agentlib:SSJavaProfiler32 or -agentlib:SSJavaProfiler64)

The CLASSPATH, however it is passed to the VM, must specify the root path to the Package source files·
The Enterprise Architect debugger uses the java.class.path property in the VM being debugged, to locate the source file
corresponding to a breakpoint occurring in a Class during execution; for example, a Class to be debugged is called:

 a.b.C

This is located in physical directory:

 C:\source\a\b

So, for debugging to be successful, the CLASSPATH must contain the root path:

 c:\source

Analyzer Script Configuration

Using the 'Debug' tab of the 'Build Script' dialog, create a script for the code you have imported and:

Select the 'Attach to process' radio button and, in the field below it, type 'attach'·

(c) Sparx Systems 2015 - 2017 Page 26 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

In the 'Use Debugger' field, click on the drop-down arrow and select 'Java'·
All other fields are unimportant; the 'Directory' field is normally used in the absence of any Class path property.

Run the Debugger

The breakpoints could show a question mark. In this case the Class might not have been loaded yet by the VM. If the
question mark remains even after you are sure the Class containing the breakpoint has been loaded, then either:

The binaries being executed by the server are not based on the source code·
The debugger cannot reconcile the breakpoint to a source file (check Class paths), or·
The JVM has not loaded the Sparx Systems agent·

Step Action

1 Run the server and check that the server process has loaded the Sparx Systems Agent:

 DLL SSJavaProfiler32.DLL or SSJavaProfiler64

Use 'Process Explorer' or similar tools to prove that the server process has loaded the agent.

2 In Enterprise Architect, open the source code and set some breakpoints.

3 Click on the Run Debug button in Enterprise Architect.

The 'Attach To Process' dialog displays.

4 Select the server process hosting the application.

5 Click on the OK button.

A confirmation message displays in the Debug window, stating that the process has been attached.

(c) Sparx Systems 2015 - 2017 Page 27 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

JBOSS Server

In this JBoss example, for a 32-bit application, the source code for a simple servlet is located in the directory location:

C:\Benchmark\Java\JBOSS\Inventory

The binaries executed by JBOSS are located in the JAW.EAR file in this location:

C:\JBOSS\03b-dao\build\distribution

The Enterprise Architect debugger has to be able to locate source files during debugging; to do this it also uses the
CLASSPATH, searching in any listed path for a matching JAVA source file, so the CLASSPATH must include a path to
the root of the Package for Enterprise Architect to find the source during debugging.

This is an excerpt from the command file that executes the JBOSS server; the Class to be debugged is at:

com/inventory/dto/carDTO

Therefore, the root of this path is included in the JBOSS_CLASSPATH.

Example Code

RUN.BAT

set SOURCE=C:\Benchmark\Java\JBOSS\Inventory

set JAVAC_JAR=%JAVA_HOME%\lib\tools.jar

if "%JBOSS_CLASSPATH%" == ""

(

set JBOSS_CLASSPATH=%SOURCE%;%JAVAC_JAR%;%RUNJAR%;

)

else

(

set JBOSS_CLASSPATH=%SOURCE%;%JBOSS_CLASSPATH%;%JAVAC_JAR%;%RUNJAR%;

)

set JAVA_OPTS=%JAVA_OPTS% -agentpath:"c:\program files\sparx systems\vea\x86\ssjavaprofiler32"

(c) Sparx Systems 2015 - 2017 Page 28 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Apache Tomcat Server

The Apache Tomcat Server can be configured for debugging using the Java debugger in Enterprise Architect. This
example shows the configuration dialog for Apache Tomcat 7.0 on a PC running Windows 7.

These three points are important:

The 'Java Virtual Machine' specifies the runtime from an installation of the Java JDK·
The source path to any servlet to be debugged is added to Java Classpath; in this case we add the path to the Tomcat·
servlet:
c:\tomcat\webapps\servlet\WEB-INF\src

The 'Java Options' include the path to the Sparx Systems debugging agent:·
-agentpath:c:\program files (x86)\sparx systems\vea\x86\ssjavaprofiler32

(c) Sparx Systems 2015 - 2017 Page 29 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Apache Tomcat Windows Service

Configuration

For users running Apache Tomcat as a WindowsTM service, it is important to configure the service to enable interaction
with the Desktop; failure to do so causes debugging to fail within Enterprise Architect.

Select the 'Allow service to interact with desktop' checkbox.

(c) Sparx Systems 2015 - 2017 Page 30 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

.NET

This section describes how to configure Enterprise Architect for debugging .NET applications. It includes:

General Setup for .NET·
Debugging an Unmanaged Application·
Debug COM Interop·
Debug ASP .NET·

(c) Sparx Systems 2015 - 2017 Page 31 of 108 Created with Enterprise Architect

http://www.sparxsystems.com/enterprise_architect_user_guide/13.5/visual_execution_analysis/general_setup_for__net.html
http://www.sparxsystems.com/enterprise_architect_user_guide/13.5/visual_execution_analysis/debugging_-_clr_versions.html
http://www.sparxsystems.com/enterprise_architect_user_guide/13.5/visual_execution_analysis/debugging_com.html
http://www.sparxsystems.com/enterprise_architect_user_guide/13.5/visual_execution_analysis/asp__net.html

User Guide - Build & Debug 30 June, 2017

General Setup for .NET

This is the general setup for debugging Microsoft .NET applications. You have two options when debugging:

Debug an application·
Attach to an application that is running·

Option 1 - Debug an application

Field Action

Debugger Select Microsoft .NET as the debugging platform.

x64 Select this checkbox if you are debugging a 64-bit application.

Deselect the checkbox if you are debugging a 32-bit application.

Mode Select the Run radio button.

Default Directory This is set as the default directory for the process being debugged.

Application Path Select and enter either the full or the relative path to the application executable.

If the path contains spaces, specify the full path; do not use a relative path·
If the path contains spaces, the path must be enclosed by quotes·

Command Line Arguments Parameters to pass to the application at startup.

Show Console Create a console window for the debugger; not applicable to attaching to a process.

Symbol Search Paths Specify any additional paths to locate debug symbols for the debugger; separate the
paths with a semi-colon.

Option 2 - Attach to an application that is running

Field Action

Debugger Select Microsoft .NET as the debugging platform.

x64 Select this checkbox if you are debugging a 64-bit application.

Deselect the checkbox if you are debugging a 32-bit application.

Mode Select the Attach to Process radio button.

(c) Sparx Systems 2015 - 2017 Page 32 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Debugging an Unmanaged Application

If you are debugging managed code using an unmanaged application, the debugger might fail to detect the correct
version of the Common Language Runtime (CLR) to load.

You should specify a config file if you don’t already have one for the debug application specified in the Debug command
of your script.

The config file should reside in the same directory as your application, and take the format:

 name.exe.config

where 'name' is the name of your application.

The version of the CLR you specify should match the version loaded by the managed code invoked by the debuggee.

This is a sample config file:

 <configuration>

 <startup>

 <requiredRuntime version="version "/>

 </startup>

 </configuration>

'Version' is the version of the CLR targeted by your plugin or COM code.

(c) Sparx Systems 2015 - 2017 Page 33 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Debug COM Interop

Enterprise Architect enables you to debug .NET managed code executed using COM in either a Local or an In-Process
server.

This feature is useful for debugging Plugins and ActiveX components.

Debug .NET Managed Code Executed Using COM

Step Action

1 Create a Package in Enterprise Architect and import the code to debug.

2 Ensure the COM component is built with debug information.

3 Create a Script for the Package.

4 In the 'Debug | Platform' page, you can select to either attach to an unmanaged process or specify the path
to an unmanaged application to call your managed code.

5 Add breakpoints in the source code to debug.

Attach to an Unmanaged Process

If you are using:

An In-Process COM server, attach to the client process·
A Local COM Server, attach to the server process·

Click on the Debug window Run button (or press F6) to display a list of processes from which you can choose.

Notes

Detaching from a COM interop process you have been debugging terminates the process; this is a known issue for·
Microsoft .NET Framework, and information on it can be found on many of the MSDN .NET blogs

(c) Sparx Systems 2015 - 2017 Page 34 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Debug ASP .NET

Debugging for web services such as ASP requires that the Enterprise Architect debugger is able to attach to a running
service.

Begin by ensuring that the directory containing the ASP .NET service project has been imported into Enterprise
Architect and, if required, the web folder containing the client web pages.

If your web project directory resides under the website hosting directory, you can import from the root and include both
ASP code and web pages at the same time.

It is necessary to launch the client first, as the ASP .NET service process might not already be running; load the client
using your browser - this ensures that the web server is running.

In the debug setup you would then select the 'Attach' radio button. When this choice is selected, the debugger will
prompt you each time for the process to debug.

Click on the Debug window Run button to start the debugger; the 'Attach To Process' dialog displays.

The name of the process varies across Microsoft operating systems, as explained in the ASP .NET SDK; for example,
under Windows Vista the name of the IIS process is w3wp.exe.

On Windows XP, the name of the process resembles aspnet_wp.exe, although the name could reflect the version of the
.NET framework that it is supporting.

There can be multiple ASP.NET processes running under XP; you must ensure that you attach to the correct version,
which would be the one hosting the .NET framework version that your application runs on; check the web.config file for
your web service to verify the version of .NET framework it is tied to.

The Debug window Stop button should be enabled and any breakpoints should be red, indicating they have been bound.

You can set breakpoints at any time in the web server code. You can also set breakpoints in the ASP web page(s) if you
imported them.

Notes

Some breakpoints might not have bound successfully, but if none at all are bound (indicated by being dark red with
question marks) something has gone out of synchrony; try rebuilding and re-importing source code

(c) Sparx Systems 2015 - 2017 Page 35 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

The PHP Debugger

The Enterprise Architect PHP Debugger enables you to debug PHP.exe scripts. This section discusses basic setup and the
various debugging scenarios that are commonly encountered; the scenarios concern themselves with the mapping of file
paths, which is critical to the success of a remote debugging session.

Script Setup·
Local Windows Machine (Apache Server)·
Local Windows Machine (PHP.exe)·
Remote Linux Machine (Apache Server)·
Remote Linux Machine (PHP.exe)·

Setup and Scenarios

Scenario Details

Script Setup An Analyzer Script is a basic requirement for debugging in Enterprise Architect;
you create a script using the toolbar of the Execution Analyzer.

Select PHP.XDebug as the debugging platform; when you select this platform the
property page displays these connection settings:

host - localhost - The adaptor that Enterprise Architect listens on for incoming·
connections from PHP

localpath - %LOCAL% - Specifies the local file path to be mapped to a remote·
file path; this is a remote debugging setting - for local debugging, clear the
value, the value is a placeholder and you should edit it to fit your particular
scenario

remotepath - %REMOTE% - Specifies the remote file path that a local file path·
is to be mapped to; this is a remote debugging setting - for local debugging,
clear the value, the value is a placeholder and you should edit it to fit your
particular scenario

logging - Enter true or false to enable logging of communication from XDebug·
server

output - names the file path on the remote machine to be used with the logging·
option; this file will always be overwritten

Local Machine Apache
Server

In this situation, consider this configuration:

O/S: Windows7·
Network computer name: MyPC·
Network share MyShare mapped to c:\myshare·
Source files in Enterprise Architect have been imported from·
c:\myshare\apache\myapp\scripts

Apache document root is set to //MyPC/MyShare/apache·
In this scenario an Analyzer Script for the connection parameters might be
configured as:

host: localhost·
port: 9000·
localpath: c:\myshare\apache\·
remotepath: MyPC/MyShare/apache/·

(c) Sparx Systems 2015 - 2017 Page 36 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Local Machine PHP.EXE In this scenario an Analyzer Script for the connection parameters might be
configured as shown, as file paths always map to same physical path:

host: localhost·
port: 9000·
localpath:·
remotepath:·

Remote Linux Machine
Apache Server

In this situation consider this configuration:

Local Machine·
O/S: Windows7·
Source files in Enterprise Architect have been imported from·
c:\myshare\apache\myapp\scripts

Remote Machine·
O/S: Linux·
Apache document root is set to home/apache/htdocs·
Source files in Apache are located at home/apache/htdocs/myapp/scripts·

In this scenario an Analyzer Script for the connection parameters might be
configured as:

host: localhost·
port: 9000·
localpath: c:\myshare\apache\·
remotepath: home/apache/htdocs/·

Remote Linux Machine
PHP.exe

In this situation consider this configuration:

Local Machine·
O/S: Windows7·
Source files in Enterprise Architect have been imported from·
c:\myshare\apache\myapp\scripts

Remote Machine·
O/S: Linux·
Source files in Apache located at home/myapp/scripts·

In this scenario an Analyzer Script for the connection parameters might be
configured as:

host: localhost·
port: 9000·
localpath: c:\myshare\apache\·
remotepath: home/·

PHP Global variables When you are at a breakpoint, you can examine the values of PHP globals using the
Analyzer Watch window. To list every global, type either 'globals' or 'superglobals'
into the field. To show an individual item, enter its name. This image shows the
value of the PHP environment variable $_SERVER being displayed.

(c) Sparx Systems 2015 - 2017 Page 37 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

(c) Sparx Systems 2015 - 2017 Page 38 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

PHP Debugger - System Requirements

This topic identifies the system requirements and operating systems for the Enterprise Architect PHP debugger.

System Requirements:

Enterprise Architect version 9·
PHP version 5.3 or above·
PHP zend extension XDebug 2.1 or above·
For web servers such as Apache, a server version that supports the PHP version·

Supported Operating Systems:

Client (Enterprise Architect)·
Microsoft Windows XP and above·
Linux running Crossover Office·
Server (PHP)·
Microsoft Windows XP and above·
Linux·

(c) Sparx Systems 2015 - 2017 Page 39 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

PHP Debugger Checklist

This topic provides a troubleshooting guide for debugging PHP scripts in Enterprise Architect.

Check Points

Check Point Details

System Requirements Apache HTTP Web Server version 2.2·
PHP version 5.3 or above·
XDebug version 2.1.1·

Enterprise Architect The model has an Analyzer Script configured to use the PHP XDebug platform·
PHP source code has been imported into the model (for recording and·
testpoints)

When the PHP XDebug platform is selected from the 'Analyzer Script' dialog,·
default runtime settings are listed in the 'Connection' field:

 localpath:%LOCAL%

 remotepath:%REMOTE%

Either define local paths for these default variables or edit the script to provide
actual paths.

For example: local source, remote source

 localpath:c:\code samples\vea\php\sample

 remotepath:webserver/sample

'webserver' is a network or local share·
'sample' is a folder below share·

PHP In order to debug PHP scripts in Enterprise Architect, it is a requirement that the
PHP is configured properly to load the XDebug extension.

Settings similar to these should be used:

[xdebug]·
xdebug.extended_info=1·
xdebug.idekey=ea·
xdebug.remote_enable=1·
xdebug.remote_handler=dbgp·
xdebug.remote_autostart=1·
xdebug.remote_host=X.X.X.X·
xdebug.remote_port=9000·
xdebug.show_local_vars=1·

The IP address X.X.X.X refers to and should match the host specified in the model
Analyzer Script.

The IP address is the address XDebug connects with and the same address the
Enterprise Architect PHP agent listens on.

Apache For debugging using Apache, these lines should be present in the Apache
configuration file, httpd.conf:

(c) Sparx Systems 2015 - 2017 Page 40 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

 LoadModule php5_module "php_home/php5apache2_2.dll"

 AddHandler application/x-httpd-php .php

 PHPIniDir "php_home"

The value "php_home" is the PHP installation path (the path where php.ini and
apache dll exist).

Troubleshooting To prevent both PHP and Apache timeouts during a debugging session, these
settings might require modification.

The settings were used while developing the PHP Debugging agent in Enterprise
Architect.

PHP File: php.ini

; Enterprise Architect prevents PHP timeouts when debugging PHP extensions

max_execution_time = 0

; Enterprise Architect prevents web server timeouts when debugging PHP
extensions

max_input_time = -1

; Enterprise Architect logs errors

display_errors = On

; Enterprise Architect displays startup errors

display_startup_errors = On

Apache File: httpd.conf

; Enterprise Architect prevents timeouts while debugging php extensions

Timeout 60000

(c) Sparx Systems 2015 - 2017 Page 41 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

The GNU Debugger (GDB)

When debugging your applications you can use the GNU Debugger (GDB), which is portable and runs on Unix-like
systems such as Linux, as well as on Windows. The GDB works for many programming languages including Ada, Java,
C, C++ and Objective-C. Using the GDB, you can debug your applications either locally or remotely.

Access

On the Execution Analyzer window, either:

Locate and double-click on the required script and select the 'Debug > Platform' page or·

Click on in the window Toolbar and select the 'Debug > Platform' page·

Ribbon Execute > Analyze > Analyzer Scripts

Context Menu Project Browser | Right-click on Package | Execution Analyzer

Keyboard Shortcuts Shift+F12

Set up the GNU Debugger

Task Details

Set up Script An Analyzer Script is a basic requirement for debugging in Enterprise Architect;
you create a script using the Execution Analyzer toolbar.

On the 'Platform' page of the Execution Analyzer Script Editor, in the 'Debugger'
field click on the drop-down arrow and select 'GDB'.

Define Connection Settings The property panel displays a number of connection settings for which you provide
values.

path - <path> - The complete file path of the GDB executable; you only·
specify this if the GDB cannot be found in the system path

source - <path>, <path> - The path in which the debugger will search for·
source files, if they do not reside in the executable directory.

remote - F - Set for remote debugging; otherwise leave blank.·
port - <nnnnn> - The port to connect to on the remote server.·
host - localhost - The host name to connect to.·
fetch - T - Set to retrieve the binary from the remote system.·
dumpgdb - <path> - The filename to write the GDB output to.·
initpath - <path> - The complete file path to the gbinit file.·

Notes

(c) Sparx Systems 2015 - 2017 Page 42 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

A requirement of the GDB is that your source code file path does not contain spaces; the debugger will not run·
correctly with spaces in the file path

(c) Sparx Systems 2015 - 2017 Page 43 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

The Android Debugger

If you are developing Java applications running on Android devices or emulators, you can also debug them. The Local
and Remote machines can be on either a 32-bit platform or a 64-bit platform.

Remote Machine
ExecutionEnvironment

Port Forwarding
Software

Android Debug
Bridge (ADB) «device»

Android Emulator

Local Machine
ExecutionEnvironment

Enterprise
Architect

Android Device
ExecutionEnvironment

«executionEnvironment»
Java

App

System Requirements

On the Remote machine, this software is required:

Android SDK, which includes the android debug bridge, ADB (you need to be familiar with the SDK and its tools)·
Java JDK (32 and 64 bit support)·
Port Forwarding software (3rd party)·

On the Local machine, this software is required:

Enterprise Architect Version 10 or higher·

Analyzer Script Settings

(c) Sparx Systems 2015 - 2017 Page 44 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Field/Button Action

Debugger Click on the drop-down arrow and select Java (JDWP).

Run Click on this radio button.

Default Directory Not applicable - leave blank.

Application path Not applicable - leave blank.

Command Line Arguments Not applicable - leave blank.

Build first Not applicable - leave blank.

Show console Not applicable - leave blank.

Show diagnostic messages Not applicable - leave blank.

Connection Not applicable - leave blank.

Port This is the application port, forward-assigned using adb or other means, through
which Enterprise Architect and the Android Virtual Machine (VM) can
communicate.

Host Host computer (defaults to localhost)

If Android is running on an emulator on a device attached to a networked computer,
enter the network name here.

By default, debugging will attempt to connect to the port you specify on the local
machine.

Source This is the source equivalent of the classpath setting in Java.

The root to each source tree should be listed. If more than one is specified, they
should be separated by a semi-colon; that is:

c:\myapp\src;c:\myserver\src

You must specify at least one root source path.

When a breakpoint occurs the debugger searches for the java source in each of the
source trees listed here.

Logging Enables logging additional information from debugger

possible values: true,false,1,0,yes,no

Output Specifies the full name of the local log file to be written.

The folder must exist or no log will be created.

The log file typically contains a dump of bytes sent between debugger and VM.

Platform If you are debugging Java running under any android scenario, select Android.

For all other scenarios, select Java.

(c) Sparx Systems 2015 - 2017 Page 45 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Configure Ports for Debugging - Port Forwarding (Local)

The debugger can only debug one VM at a time; it uses a single port for communication with the VM. The port for the
application to be debugged can be assigned using ADB, which is supplied with the Android SDK.

Before debugging, start the application once in the device. When the app starts, discover its process identifier (pid):

 adb jdwp

The last number listed is the pid of the last application launched; note the pid and use it to allow the debugger to connect
to the VM:

adb forward tcp:port jdwp:pid·
 - port = port number listed in analyzer script
 - pid = process id of the application on the device

Configure Ports for Debugging - Port Forwarding (Remote)

To debug remotely the same procedure should be followed as for the local machine, but the communication requires
additional forwarding as the socket created using the adb forward command above will only listen on the local adapter.
The socket is bound to the localhost and attempts to connect to this port will be met with connection refused messages.

In order to achieve remote debugging it is necessary to have a proxy running on the remote machine that listens to all
incoming connections and forwards all traffic to the adb port; there are numerous software products available to do this.

Remote debugging with Enterprise Architect will not work unless a proxy port forwarder has been configured by the
user.

(c) Sparx Systems 2015 - 2017 Page 46 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Java JDWP Debugger

Java provides two main debugging technologies: an in-process agent-based system called the Java Virtual Machine Tools
Interface (JVMTI) and a socket-based paradigm called the Java Debug Wire Protocol (JDWP). A Java Virtual Machine
can name either one of these but not both, and the feature must be configured when the JVM is started.

System Requirements

The Enterprise Architect JDWP debugger will only be able to communicate with a JVM started with the 'JDWP'1.
option. Here is an example of the command line option:
 java -agentlib:jdwp=transport=dt_socket,address=localhost:9000,server=y,suspend=n -cp
"c:\java\myapp;%classpath%" demo.myApp "param1" "param2"

The Virtual Machine should not be currently attached to a debugger.2.

It is not possible for a VM to be debugged by Enterprise Architect and Eclipse at the same time.3.

Analyzer Script Settings

Field/Button Action

Debugger Click on the drop-down arrow and select Java (JDWP).

Run Click on this radio button to run the debugger when the script is executed.

Default Directory Not applicable - leave blank.

Application path Not applicable - leave blank.

Command Line Arguments Not applicable - leave blank.

Build first Not applicable - leave blank.

Show console Not applicable - leave blank.

Show diagnostic messages Not applicable - leave blank.

Connection Not applicable - leave blank.

Port Set the application port forward-assigned to the VM process during start-up, in the
Java command-line options.

Host Set the host computer (defaults to localhost)

If VM is running on a networked computer, enter the network name or url here.

By default debugging will attempt to connect to the port you specify on the local
machine.

Source This is the source equivalent of the classpath setting in Java.

List the root to each source tree; specify at least one root source path. If you specify
more than one, separate them with a semi-colon; for example:

(c) Sparx Systems 2015 - 2017 Page 47 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

 c:\myapp\src;c:\myserver\src

When a breakpoint occurs the debugger searches for the Java source in each of the
source trees listed here.

Logging Enable or disable logging of additional information from the debugger.

Possible values include:

true·
false·
1·
0·
yes·
no·

Output Specify the full name of the local log file to be written. If the folder does not
already exist, no log will be created.

The log file typically contains a dump of bytes sent between the debugger and VM.

Platform Select Java.

Configure Ports for Debugging

The debugger can only debug one VM at a time; it uses a single port for communication with the VM. The port for the
application to be debugged is assigned when the VM is created.

Local Debugging

Where both Enterprise Architect and the Java VM are running on the same machine, you can perform local debugging. It
is necessary to launch the VM with the JDWP transport enabled - see the documentation on Java Platform Debugger
Architecture (JPDA) at Oracle for the command line option specifications. For example:

 java -agentlib:jdwp=transport=dt_socket,address=localhost:9000,server=y,suspend=n -cp
"c:\samples\java\myapp;%classpath%" samples.MyApp "param1" "param2"

In this example the values for the Analyzer script would be 'host = localhost' and 'port = 9000'.

Remote Debugging

Where Enterprise Architect is running on the local machine and the Java VM is running on a remote machine, you can
perform remote debugging. It is necessary to launch the VM with the JDWP transport enabled - see the documentation
on JPDA at Oracle for the command line option specifications. Here is an example, where the remote computer has the
network name test01:

 java -agentlib:jdwp=transport=dt_socket,address=9000,server=y,suspend=n -cp
"c:\samples\java\myapp;%classpath%"

 samples.MyApp "param1" "param2"

Note the absence of a host name in the address. This means the VM will listen for a connection from the network not just
the local machine. In this example the values for the Analyzer script would be host = test01 and port = 9000.

(c) Sparx Systems 2015 - 2017 Page 48 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

(c) Sparx Systems 2015 - 2017 Page 49 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Tracepoint Output

The Tracepoints page of the Analyzer Script enables you to direct where the output from any Trace statements goes
during a debug session.

Access

On the Execution Analyzer window, either:

Locate and double-click on the required script and select the 'Debug > Tracepoints' page or·

Click on in the window Toolbar and select the 'Debug > Tracepoints' page·

Ribbon Execute > Analyze > Analyzer Scripts

Context Menu Project Browser | Right-click on Package | Execution Analyzer

Keyboard Shortcuts Shift+F12

Tracepoint properties

Field Detail

Output You can select from two options:

'Screen' (the default) - The output is directed to the Debug window·
'File' - The output is directed to file·

Folder Enter the folder to use for Trace statement log files.

Filename Enter the name to use for the Trace statement log files.

Overwrite If selected, the specified file is overwritten each time a debug session is started.

Auto Number If selected, the Trace log file is composed of the filename you specify and a
number.

Each time you start a debug session, the number is incremented.

Prefix trace output with
function

If selected, any Trace statements executed during the debug session run are
prefixed with the current function call.

(c) Sparx Systems 2015 - 2017 Page 50 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Workbench Setup

This topic describes the requirements for setting up the Object Workbench on Java and Microsoft .NET.

Access

On the Execution Analyzer window, either:

Locate and double-click on the required script and select the 'Debug > Workbench' page or·

Click on in the window Toolbar and select the 'Debug > Workbench' page·

Ribbon Execute > Analyze > Analyzer Scripts

Context Menu Project Browser | Right-click on Package | Execution Analyzer

Keyboard Shortcuts Shift+F12

Platforms

Platform Detail

Platforms Supported The Workbench supports these platforms:

Microsoft .NET (version 2.0 or later)·
Java (JDK 1.4 or later)·

Microsoft .NET
Workbench

The .NET workbench requires an assembly, which is used to create the workbench
items.

You specify the path to the assembly on the 'Workbench' page of the Analyzer
Script.

There are two constraints in using the .NET workbench:

Members defined as struct in managed code are not supported·
Classes defined as internal are not supported·

Java Workbench The Java workbench uses the Virtual Machine settings configured in the Analyzer
Script 'Debug' page to create the JVM.

(c) Sparx Systems 2015 - 2017 Page 51 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Microsoft C++ and Native (C, VB)

You can debug native code only if there is a corresponding PDB file for the executable. A PDB file is created as a result
of building the application.

The build should include full debug information and there should be no optimizations set.

The script must specify two things to support debugging:

The path to the executable·
Microsoft Native as the debugging platform·

(c) Sparx Systems 2015 - 2017 Page 52 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

General Setup

This is the general setup for debugging Microsoft Native Applications (C++, C, Visual Basic). You have two options
when debugging:

Debug an application·
Attach to an application that is running·

Option 1 - Debug an application

Field Action

Debugger Select Microsoft Native as the debugging platform.

x64 Select this checkbox if you are debugging a 64-bit application.

Deselect the checkbox if you are debugging a 32-bit application.

Mode Select the Run radio button.

Default Directory This is set as the default directory for the process being debugged.

Application Path Select and enter either the full or the relative path to the application executable.

If the path contains spaces, specify the full path; do not use a relative path·
If the path contains spaces, the path must be enclosed by quotes·

Command Line Arguments Parameters to pass to the application at startup.

Show Console Create a console window for the debugger; not applicable for attaching to a process.

Symbol Search Paths Specify any additional paths to locate debug symbols for the debugger; separate the
paths with a semi-colon.

Option 2 - Attach to an application that is running

Field Action

Debugger Select Microsoft Native as the debugging platform.

x64 Select this checkbox if you are debugging a 64-bit application.

Deselect the checkbox if you are debugging a 32-bit application.

Mode Select the Attach to Process radio button.

Symbol Search Paths Specify any additional paths to locate debug symbols for the debugger.

You could specify a symbol server here if you prefer; separate the paths with a
semi-colon or comma.

(c) Sparx Systems 2015 - 2017 Page 53 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

(c) Sparx Systems 2015 - 2017 Page 54 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Debug Symbols

For applications built using Microsoft Platform SDK, Debug Symbols are written to an application PDB file when the
application is built.

The Debugging Tools for Windows, an API used by the Visual Execution Debugger, uses these symbols to present
meaningful information to Execution Analyzer controls.

These symbols can easily get out of date and cause aberrant behavior - the debugger might highlight the wrong line of
code in the editor whilst at a breakpoint; it is therefore best to ensure the application is built prior to any debugging or
recording session.

The debugger must inform the API how to reconcile addresses in the image being debugged; it does this by specifying a
number of paths to the API that tell it where to look for PDB files.

For system DLLs (kernel32, mfc90ud) for which no debug symbols are found, the Call Stack shows some frames with
module names and addresses only.

You can supplement the symbols translated by passing additional paths to the API; you pass additional symbol paths in a
semi-colon separated list in the 'Debug' tab.

(c) Sparx Systems 2015 - 2017 Page 55 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Test Scripts

These sections explain how to configure the 'Test' page of an Analyzer Script for performing unit testing on your code.
Most users will apply this to NUnit and JUnit test scenarios. Enterprise Architect accepts the output from these systems
and can automatically add to and manage each unit test case history. To view the case history, you would press Alt+3
while selecting the test case Class element.

Access

On the Execution Analyzer window, either:

Locate and double-click on the required script and select the 'Test > Test' page or·

Click on in the window Toolbar and select the 'Test > Test' page·

Ribbon Execute > Analyze > Analyzer Scripts

Context Menu Project Browser | Right-click on Package | Execution Analyzer

Keyboard Shortcuts Shift+F12

Actions

Execute Command As: Process

Enter the path to a program or batch file to run, followed by any parameters.

Batch File

When using this option you can enter multiple commands which are then executed
as a single script in a command console; you have access to any environment
variables available in a standard command console.

Example NUnit

 "C:\Program Files\NUnit\bin\nunit-console.exe" "bin\debug\Calculator.exe"

JUnit

 java junit.textui.Testrunner %N

The command listed in this field is executed as if from the command prompt; as a
result, if the executable path or any arguments contain spaces, they must be
surrounded in quotes.

If you include the string %N in your test script it is replaced by the fully
namespace-qualified name of the currently selected Class when the script is
executed.

Default Directory Preset to the Build default directory.

Parse Output When a parser is selected, output of nUnit and jUnit tests can be parsed, saved and
managed from the model; (Alt+3). Be aware that output is only captured when a
parser is selected.

(c) Sparx Systems 2015 - 2017 Page 56 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Build First Select to ensure that the Package is compiled each time you run the test.

(c) Sparx Systems 2015 - 2017 Page 57 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Run Script

This section describes how to create a command for running your executable code.

Access

On the Execution Analyzer window, either:

Locate and double-click on the required script and select the 'Run' page or·

Click on in the window Toolbar and select the 'Run' page·

Ribbon Execute > Analyze > Analyzer Scripts

Context Menu Project Browser | Right-click on Package | Execution Analyzer

Keyboard Shortcuts Shift+F12

Script elements

Element Description

Command This is the command that is executed when you select the 'Execute > Run > Start'
ribbon option; at its simplest, the script would contain the location and name of the
file to be run.

Examples These two examples show scripts configured to run a .Net and a Java application in
Enterprise Architect.

.Net:

 C:\benchmark\cpp\example_net_1\release\example.exe

Java:

 customer

The command listed in this field is executed as if from the command prompt; as a
result, if the executable path or any arguments contain spaces, they must be
enclosed by quotes.

Notes

Enterprise Architect provides the ability to start your application normally OR with debugging from the same script;·
the 'Analyzer' menu has separate options for starting a normal run and a debug run

(c) Sparx Systems 2015 - 2017 Page 58 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Deploy Script

These sections explain how to create a command script for deploying the current Package. The script can be executed by
selecting the 'Code > Build and Run > Deploy' ribbon option or by pressing Ctrl+Shift+Alt+F12.

Access

On the Execution Analyzer window, either:

Locate and double-click on the required script and select the 'Deploy' page or·

Click on in the window Toolbar and select the 'Deploy' page·

Ribbon Execute > Analyze > Analyzer Scripts

Context Menu Project Browser | Right-click on Package | Execution Analyzer

Keyboard Shortcuts Shift+F12

Actions

Action Detail

Execute Command as: Process

If the deployment is handled externally, enter the path to the program or batch file
to run, followed by any parameters; the program is launched in a separate process.

Example:

 C:\apache-ant-1.7.1\bin\ant.cmd myproject deploy

Batch File

When using this option, you can enter multiple commands that are then executed as
a single script in a command console; you have access to any environment variables
available in a standard command console.

Example:

 @echo on

 IF NOT EXIST "%1%" GOTO DEPLOY_NOWAR

 IF "%APACHE_HOME%" == "" GOTO DEPLOY_NOAPACHE

 xcopy /L "%1%" "%APACHE_HOME%\webapps"

 GOTO DEPLOY_END

 rem

 rem NO WAR FILE

 rem

 :DEPLOY_NOWAR

 echo "%1% WAR file not found"

 GOTO DEPLOY_END

(c) Sparx Systems 2015 - 2017 Page 59 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

 rem

 rem NO APACHE ENVIRONMENT VARIABLE

 rem

 :DEPLOY_NOAPACHE

 echo "APACHE_HOME environment variable not found"

 :DEPLOY_END

 pause

Parse Output Selecting a Parser from the list causes output of the deploy script to be captured; the
output is parsed according to the syntax selected from the list.

To display the System Output window, select the Show > Window > System
Output ribbon option.

(c) Sparx Systems 2015 - 2017 Page 60 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Testpoints Output

The Testpoints page of the Analyzer Script helps you to configure the output of a Testpoint run.

Access

On the Execution Analyzer window, either:

Locate and double-click on the required script and select the 'Test > Testpoints' page or·

Click on in the window Toolbar and select the 'Test > Testpoints' page·

Ribbon Execute > Analyze > Analyzer Scripts

Context Menu Project Browser | Right-click on Package | Execution Analyzer

Keyboard Shortcuts Shift+F12

Options

Option Description

Output You can select from two options:

'Screen' (the default) - The output is directed to the 'Testpoints' tab of the·
System Output window

'File' - The output is directed to file·

Folder Enter the folder to use for Testpoint log files.

Filename Enter the name to use for the Testpoint log files.

Overwrite When this option is selected, the file specified is overwritten each time a Testpoint
run is performed.

Auto Number When this option is selected, the Testpoint output is composed of the filename you
specify and the number of the Test run; each time you perform a Test run the
number is incremented.

Prefix trace output with
function

When this option is selected, any trace statements executed during the Testpoint run
are prefixed with the current function call.

(c) Sparx Systems 2015 - 2017 Page 61 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Recording Scripts

The beauty of recording is not really that we always get to see the bigger picture, but a chance to see a smaller picture
that has some truth to tell. We have all seen Sequence diagrams that are less than helpful. (The same message appearing
100 times in succession on a diagram does tell us something, but not much.) Fortunately Enterprise Architect takes care
of this first point through the use of fragments. Repeating behaviors are identified as Patterns and represented once as a
fragment on the Sequence diagram. The fragment is labeled according to the number of iterations. The recording history,
of course, always shows the entire history. We also need tools to help us focus the recording on particular areas of
interest and reduce the noise from others. We can use filters to do this. With filters, you can exclude any Classes,
functions, or even modules from any recording. You can create multiple sets of filters and use them with marker sets to
target different Use Cases.

Access

On the Execution Analyzer window, either:

Locate and double-click on the required script and select the 'Recording' page or·

Click on in the window Toolbar and select the 'Recording' page·

Ribbon Execute > Analyze > Analyzer Scripts

Context Menu Project Browser | Right-click on Package | Execution Analyzer

Keyboard Shortcuts Shift+F12

Filter Strings

Element Discussion

Filtering If the 'Enable Filter' checkbox is selected on the 'Recording' page of the Execution
Analyzer Script Editor, the debugger excludes calls to matching methods from the
recording. The comparison is case-sensitive.

To add a value, click on the 'New' ('Insert') icon in the right corner of the 'Exclusion
Filters' box, and type in the comparison string; each filter string takes the form:

 class_name_token::method_name_token

The class_name_token excludes calls to all methods of a Class or Classes that have
a name matching the token; the string can contain the wildcard character *
(asterisk).

The method_name_token excludes calls to methods having a name that matches the
token; again, the string can contain the wildcard character *.

Both tokens are optional; if no Class token is present, the filter is applied only to
global or public functions (that is, methods not belonging to any Class).

Example In this Java example, the debugger would exclude:

Calls to the OnDraw method for the Class Example.common.draw.DrawPane·
Calls to any method of any Class having a name beginning with·
Example.source.Collection

(c) Sparx Systems 2015 - 2017 Page 62 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Calls to any constructor for any Class (such as <clint> and <init>)·

In this Native Code example, the debugger would exclude:

Calls made to Standard Template Library namespace·
Calls to any Class beginning with TOb·
Calls to any method of Class CLock·
Calls to the method GetLocation for Class CTrain·
Calls to any Global or Public Function with a name beginning with Get·

Filters

Use Filter Entry To Filter

::Get* All public functions having a name beginning with 'Get' from the recording session
(for example, GetClientRect in Windows API).

::Get All methods beginning with 'Get' in any Class.

CClass::Get* All methods beginning with Get for the CClass Class.

CClass::* All methods for CClass Class.

ATL*

std*

All methods for Classes belonging to Standard Template and Active Template
Libraries.

CClass::GetName The specific method(s) GetName for the CClass Class.

(c) Sparx Systems 2015 - 2017 Page 63 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Build Application

This topic explains how to execute a Build script on your application, within Enterprise Architect.

Access

Ribbon Code > Build and Run > Build > Build

Execute > Run > Build > Build

Keyboard Shortcuts Ctrl+Shift+F12

Other 'Build' toolbar >

Execution Analyzer window |

Action

When you select the 'Build' option, it executes the 'Build' command in the script selected in the Execution Analyzer
window. The progress and outcome of the build operation are displayed in the 'Build' tab of the System Output window.

You can quickly visit the line of code for any compilation error appearing by double-clicking the error.

(c) Sparx Systems 2015 - 2017 Page 64 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Locate Compiler Errors in Code

When you build an application using an Analyzer Script, compiler output is logged in the System Output window. You
can double-click on any error message that appears here and be taken to the source code. When you do, the cursor is
positioned on the line containing the error.

Tip

If output is missing, check that a language parser is mentioned in the Analyzer Script (Shift+F12).

Access

Ribbon Show > Window > System Output

Keyboard Shortcuts Ctrl+Shift+8

(c) Sparx Systems 2015 - 2017 Page 65 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Debugging

Enterprise Architect is more than a drawing tool. Every feature that you might expect in an IDE is also available.
Comprehensive debugging environments and tools for many major platforms are provided. By integrating debugging
capability within the modeling tool allows code to be developed, built and managed by its authors, working and
collaborating in an integrated model has made actions count and every action accountable in ways that are just not
possible using other tool chains.

Features

Speed

Debuggers in Enterprise Architect are quick! Stepping through programs won't take all day.

The Recording program execution can be done without manual stepping.

Support

C++, C and Visual Basic·
Microsoft .NET, ASP.NET WCF·
Java, using socket transport (JDWP) or in memory model (JVMIT)·
Android on an emulator or device·
Javascript, VBScript and JScript·
PHP scripts on Apache web servers·
Remote Linux GDB processes using Enterprise Architect on Windows (how's that for interoperability?)·
Simulation - debug simulations in UML and BPMN·
Executable StateMachines - debug an executing StateMachine·

Isolation

(c) Sparx Systems 2015 - 2017 Page 66 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

The debuggers operate out of process from Enterprise Architect, isolating it from side effects. (Your artifact is safe!)

Efficiency

Starting and stopping the debugger is quick and painless. It does not hold you back. Designed to be a responsive UI, the
main UI thread is isolated from duties that are not its responsibility.

Productivity

Switch from modeling to requirements, from raising a change request to tracking code changes in a model shared across
an organization, to profiling recent code changes. All in the one tool.

Notes

The debug and record features of the Visual Execution Analyzer are not supported for the Java server platform·
'Weblogic' from Oracle

(c) Sparx Systems 2015 - 2017 Page 67 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Run the Debugger

Enterprise Architect provides a number of ways to start and control a debug session. There is the main Debug window, as
well as a Debug toolbar and the 'Run' panel in the 'Execute' ribbon. It is always best to display the Debug window
whenever you are running a debug session, as this is where all debug output is captured.

Access

Ribbon Execute > Analyze > Debugger > Open Debugger

Execute > Run

Keyboard Shortcuts Alt+8 (displays the Debug window)

F6 (begins execution of the application being debugged)

Other Right-click on Project Browser caption bar menu | Analyzer Toolbars | Debugging

Using the Debug window

Action Detail

Start the Debugger When an Analyzer script has been configured to support debugging, you can start
the debugger in these ways:

From the ribbon, select 'Execute > Run > Start'·
From the ribbon, select 'Execute > Analyze > Debugger > Start Debugging'·

On the 'Debug' toolbar, click on the button, or·
Press F6·

You can also launch the debugger for any script through its context menu in the
'Analyzer Script Window', or press Shift+F12

If you have no Analyzer Script, it is still possible to debug a running application by
attaching to that process directly:

From the ribbon, select 'Execute > Analyze > Debugger > Attach to Process',·
or

On the 'Debug' toolbar, click on the (Attach) button and choose the·
debugging platform manually

Pause/Resume Debugging You can pause a debugging session, or resume the session after pausing, in these
ways:

From the ribbon, select 'Execute > Run > Pause'·

On the 'Debug' toolbar, click on the button·

Stop the Debugger To stop debugging, either:

(c) Sparx Systems 2015 - 2017 Page 68 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

From the ribbon, select 'Execute > Run > Stop'·

On the 'Debug' toolbar, click on the (Stop) button·
Press Ctrl+Alt+F6·

The debugger normally ends when the current debug process terminates; however,
some applications and services (such as Java Virtual Machine) might require the
debugger to be manually stopped.

Step Over Lines of Code To step over the next line of code:

From the ribbon, select 'Execute > Run > Step Over', or·

On the 'Debug' toolbar, click on the (Step Over) button, or·
Press Alt+F6·

Step Into Function Calls To step into a function call:

From the ribbon, select 'Execute > Run > Step In', or·

On the 'Debug' toolbar, click on the (Step In) button, or·
Press Shift+F6·

If no source is available for the target function then the debugger returns
immediately to the caller.

Step Out Of Functions To step out of a function:

From the ribbon, select 'Execute > Run > Step Out'·

On the 'Debug' toolbar, click on the (Step Out) button, or·
Press Ctrl+F6·

If the debugger steps out into a function with no source code, it will continue to
step out until a point is found that has source code.

Show Execution Point While the debugger is paused, to return to the source file and line of code that the
debugger is about to execute:

From the ribbon, select 'Execute > Run > Start > Show Execution Point'·

On the 'Debug' toolbar, click on the (Show Execution Point) button.·
The appropriate line is highlighted, with a pink arrow in the left margin of the
screen.

Output During a debug session, messages display in the Debug window detailing:

Startup of session·
Termination of session·
Exceptions·
Errors·
Trace messages, such as those output using Java System.out or .NET·
System.Diagnostics.Debug

If you double-click on a debug message, either:

A pop-up displays with more complete message text, or·
If there has been a memory leak, the file is displayed at the point at which the·

(c) Sparx Systems 2015 - 2017 Page 69 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

error occurred

Save Output (and Clear
Output)

You can save the entire contents of the Debug output to an external .txt file, or you
can save selected lines from the output to the Enterprise Architect clipboard.

To save all of the output to file, click on the (Save output to file) button.

To save selected lines to the clipboard, right-click on the selection and select the
'Copy Selected to Clipboard' option.

When you have saved the output or otherwise do not want to display it any more,
right-click on the current output and select the 'Clear Results' option.

Switch to Profiler If you are running a debug session on code, you can stop the debug session and
immediately switch to a Profiling session.

To switch from the Debugger to the Profiler:

From the ribbon, select 'Execute > Analyze > Debugger > Switch to Profiler'·

On the Debug window, click on the ' | Switch to Profiler' option, or·

On the Debug toolbar, click on the ' | Switch to Profiler' option·
The Profiler attaches to the currently-running process.

This facility is not available for the Java debuggers.

(c) Sparx Systems 2015 - 2017 Page 70 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Breakpoint and Marker Management

Breakpoints work in Enterprise Architect much like in any other debugger. Markers are like breakpoints, but in
Enterprise Architect they have special powers. You set any marker or breakpoint in the Source Code editor. They are
visible in the left margin, and clicking in this margin will add a breakpoint at that line. Breakpoints and markers are
interchangeable. You can change a breakpoint into a marker and vice versa using its 'Properties' dialog. Simply put,
markers perform actions such as recording execution and analysis, that breakpoints do not. The action of a breakpoint is
always to stop the program. You can quickly view and edit a breakpoint or marker's properties using Ctrl+click on its
icon in the editor margin or in the Breakpoints and Markers window.

Breakpoints are maintained in sets. There is a default set for each model and each breakpoint typically resides there, but
you can save the current breakpoint configuration as a named set, create a new set and switch between them. Breakpoint
sets are shared; that is, they are available to the model community. The exception is the Default set which is a personal
set allocated to each user of any model. It is private.

Access

Ribbon Execute > Windows > Breakpoints

Breakpoint and Marker Options

Option Detail

Delete a breakpoint or
marker

To delete a specific breakpoint:

If the breakpoint is enabled, click on the red breakpoint circle in the left margin·
of the Source Code Editor, or

Right-click on the breakpoint or marker in the Source Code Editor, the·
Breakpoints folder or the Breakpoints & Markers window and select the
'Delete' option, or

Select the breakpoint in the 'Debug Breakpoints' tab and press the Delete key·

Delete all breakpoints
Click on the Delete all breakpoints button ().

Breakpoint properties In the Breakpoints window or code editor, use the marker's context menu to bring
up the properties. Here you can change the marker type, add or modify constraints
and enter trace statements. (Useful shortcut: hold the Ctrl key while clicking the
marker, to quickly show its properties.)

Disable a breakpoint Deselect the checkbox against the breakpoint or marker.

Enable a breakpoint or
marker

Select the checkbox against the breakpoint or marker.

Disable all breakpoints
Click on the button

Enable all breakpoints

(c) Sparx Systems 2015 - 2017 Page 71 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Click on the Enable all breakpoints button ().

Break when memory
address is modified

Click on the Data breakpoint button ().

Identify or change the
marker set Check the field in the Breakpoints & Events window

toolbar.

If necessary, click on the drop down arrow and select a different marker set.

The Default set is normally used for debugging and is personal to your user ID;
other marker sets are shared between all users within the model.

Change how breakpoints
and markers are grouped
on the Breakpoints &
Events window

The breakpoints and markers can be grouped by Class or by code file. To group the

items, click on the down arrow on the icon in the toolbar, and click on the
appropriate option. If you do not want to group the items, click on the selected
option to deselect it; the breakpoints and markers are then listed by line number.

Breakpoint States

State Remarks

Debug Running: Bound

Debug Not Running: Enabled

Debug Running: Disabled

Debug Not Running: Disabled

Debug Running: Not bound - this usually means that a module is yet to be loaded.
Also, dlls are unloaded from time to time.

Debug Not Running: N/a

Debug Running: Failed - this means the debugger was unable to a match this line of
code to an instruction in any of the loaded modules. Perhaps the source is from
another project or the project configuration is out of date. Note, that if the module
date is earlier than the breakpoint's source code date you will see a notification in
the debugger window. The text is red in color so they will stand out. This is clear
sign that the project requires building.

Debug Not Running: N/a

(c) Sparx Systems 2015 - 2017 Page 72 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Setting Code Breakpoints

Normal Breakpoints are typically set on a line of source code. When the Debugger hits the indicated line during normal
execution, the Debugger halts execution and displays the local variables, call stack, threads and other run-time
information.

Set a breakpoint on a line of code

Step Action

1 Open the source code to debug in the integrated source code editor.

2 Find the appropriate code line and click in the left margin column - a solid red circle in the margin
indicates that a breakpoint has been set at that position.

If the code is currently halted at a breakpoint, that point is indicated by a blue arrow next to the marker.

Alternatively, you can set the Breakpoint marker (or other marker) by right-clicking on the left margin on
the required line, to display the breakpoint/marker context menu; select the appropriate marker type.

(c) Sparx Systems 2015 - 2017 Page 73 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Trace Statements

A Trace Statement is a message that is output during execution of a debug session. Trace statements can be defined in
Enterprise Architect without requiring any changes to your application source code.

Tracepoint Markers are set in the code editor. Like breakpoints, they are placed on a line of code. When that line of code
executes, the debugger evaluates the statement, the result of which is logged to the Debug window. (or to file if
overridden by the Analyzer script)

Access

Any existing Trace statements can be viewed and managed in the Breakpoints & Markers window. The Breakpoints &
Markers window can be displayed using either of the methods outlined here.

Ribbon Execute > Windows > Breakpoints

Add a Tracepoint Marker

Step Action

1 Open the source code to debug in the source code editor.

2 Find the appropriate code line, right-click in the left margin and select the 'Add Tracepoint Marker'
option.

If a marker is already there, press Ctrl+click to show the Breakpoint Properties window.

3 Ensure the 'Trace statement' checkbox is selected.

4 In the text field under the 'Trace statement' checkbox, type the required Trace statement.

5 Click on the OK button. A Tracepoint Marker is shown in the left margin of the code editor.

Specifying a Trace Statement

(c) Sparx Systems 2015 - 2017 Page 74 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

A trace statement can be any freeform text. The value of any variables currently in scope can also be included in a trace
statement by prefixing the variable name with a special token.

The available tokens are:

$ - when the variable is to be interpreted as a string·
@ - when the variable is a primitive type (int, double, char)·

Using the example in the image above, we could output the number of people getting off a train by using this statement:

There were @Passengers before @PeopleOFF got off the train at $Arriving.Name Station

In addition to tracing the values of variables from your code, you can use the $stack and $frame keywords in your Trace
statement to print the current stack trace; use:

$stack - to print all frames, or·
$frame[start](count) - print a specific number of frames from the stack starting at a given frame; for example,·
$frame[0](5) will print the current frame and 4 ancestors

Notes

Trace statements can be included on any type of breakpoint or marker.·

(c) Sparx Systems 2015 - 2017 Page 75 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Break When a Variable Changes Value

Data breakpoints can be set on a pre-determined memory variable to cause the debugger to halt execution at the line of
code that has just caused the value of the variable to change. This can be useful when trying to track down the point at
which a variable is modified during program execution, especially if it is not clear how program execution is affecting a
particular object state.

Access

Ribbon Execute > Windows > Local Variables : Right-click on variable > Break When
Variable is Modified or

Execute > Windows > Watches : Right-click on variable > Break When Variable is
Modified

Other In a code editor window: Right-click on the variable of interest | Break when item
modified

Capture changes to a variable using data breakpoints

Steps Detail

1 Set a normal breakpoint in the code so you can choose a variable. Then run the debugger (F6).

2 When the program has hit the breakpoint, select the variable of interest and from its context menu, select
the 'Break When Variable is Modified' option.

(c) Sparx Systems 2015 - 2017 Page 76 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

3 There are no breakpoint indicators in the code, but data breakpoints are easily recognizable in the
Breakpoints & Events window, being a blue icon with a white diamond. Enterprise Architect displays the
name of the variable and its address instead of a line number.

4 With the data breakpoint set, you can disable any other breakpoints you might have. The program will
stop at any line of code that changes this variable's value. Now run your program.

5 When this variable is modified, the debugger halts and displays the current line of code in the editor. This
is not the line that caused the break, but the line of code following the event. The event is logged to the
Debugger window.

Now we know how and where this value (its State) has changed. For example, the statement at line 58 has
just updated the number of Passengers.

6 Having discovered this and other places where this value is being changed, be sure to get rid of the
notification before moving on. You can delete the data breakpoint quickly by selecting it in the
Breakpoints window and pressing the Delete key.

You can also use the right-click context menu to do this.

(c) Sparx Systems 2015 - 2017 Page 77 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Notes

This feature is not presently supported by the Microsoft .NET platform·

(c) Sparx Systems 2015 - 2017 Page 78 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Trace When Variable Changes Value

When your code executes, it might change the value of a variable. It is possible to capture such changes and the
variable's new value, on the Debug window. You can then double-click on the change record to display the line of code
that caused the change, in the Code Editor.

Access

Ribbon Execute > Windows > Local Variables : Right-click on variable > Trace When
Variable is Modified or

Execute > Windows > Watches : Right-click on variable > Trace When Variable is
Modified

Other In Code Editor | Right-click on variable | Trace When Variable Modified

Set up Trace

The variable you are tracing must be in scope, so to identify and select it, set a normal breakpoint on the line of code
where you know that the variable will exist. When the debugger reaches this breakpoint, locate the variable and use its
context menu to enable the trace.

To locate a variable:

If you see the variable in the source code, hover over it, right-click and select the 'Display variable' option;·
Enterprise Architect will locate it

If the variable is in scope (a local, or 'this' or a member of 'this'), look for it in the Locals Window ('Execute >·
Windows > Local Variables')

If the variable is global (C, C++), display the Watches window ('Execute > Windows > Watches') and search for it·
by name

If the variable is a Class static member, display the Watches window ('Execute > Windows > Watches') and enter its·
fully qualified name

Once trace is enabled, you can disable all other breakpoints and let the program run. Each time the variable changes
value, it will be logged to the 'Output' tab of the debugger. Check the change in value and double-click on the line to
display the code in the Code Editor.

Notes

The debugger does not halt when the change event occurs, it only logs the change·
This facility is available on the Microsoft Native and Java platforms·
Microsoft .NET does not support breakpoints on values·

(c) Sparx Systems 2015 - 2017 Page 79 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Detecting Memory Address Operations

Being able to detect where and when an area of memory is being read or written can be a great help for investigators,
even when the code base is well understood. Without this tool, a C++ developer could have a potentially daunting task of
tracking where and when a global variable is accessed, and debugging those functions. Data breakpoints allow a C++
programmer to track when a variable / memory location is read or when it is written. When the operation is detected, the
debugger will halt the execution and the line of code following the operation will be displayed in the code editor.

Access

Ribbon Execute > Windows > Breakpoints

Detect operation on memory address

Step Action

1 Click the data breakpoint button .

2 Enter the memory address to watch. You can copy an address from the locals variables window.

3 Select the operation to detect. If you select Write, the debugger will break when the address is written to.
If you choose Read / Write, the debugger will notify you when the address is read or when it is written.

4 Select the action to perform. If you choose Break, the debugger will halt the program and the line of code
will be shown in the editor. If you choose Trace, the debugger will not halt execution, but log any
operation on the address as it occurs. This output is displayed in the Debugger Window.

5 The data breakpoint is added to the Breakpoints and Markers window.

(c) Sparx Systems 2015 - 2017 Page 80 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

6 You can use the context menu on the data breakpoint to check the value at the memory address.

7 To delete a data breakpoint, select it in the Breakpoints and Markers window and press the Delete key.
Alternatively, deselect the checkbox next to it. Data breakpoints are deleted when they are disabled; they
do not persist as other breakpoints do.

System Requirements

Memory address breakpoints are supported in the C/C++ native debugger.

(c) Sparx Systems 2015 - 2017 Page 81 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Breakpoint Properties

Breakpoints have a number of additional properties that determine what occurs when executing the line of code that the
breakpoint applies to.

These properties define:

The action to be performed·
The line of code that the breakpoint applies to·
Constraints that determine whether or not the action is performed when the breakpoint is hit·
Trace information to be output when the breakpoint is hit·

Access

There are several ways to display the 'Breakpoint Properties' dialog:

In Code Editor:

Right-click on a breakpoint marker | Properties or·
Ctrl+Click on breakpoint marker or·
Right-click on code that has a breakpoint marker | Breakpoint | Properties·

In the Breakpoints & Markers window:

Right-click on breakpoint | Properties·

Options

Field Details

Action The behavior when the breakpoint is hit.

(c) Sparx Systems 2015 - 2017 Page 82 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Line The line of source code that this breakpoint applies to.

Stack Height For Stack Capture markers, the number of caller frames to record. To record the
entire Stack, set the value to 0.

Constraints Defines the condition under which the breakpoint action will be taken. For normal
breakpoints this would be the condition that halts execution. In this example, for a
normal breakpoint, execution would stop at this line when the condition evaluates
to True. Constraints are evaluated each time the line of code is executed.

 (this.m_FirstName="Joe") AND (this.m_LastName="Smith")

Trace statement A message output to the Debug window when the breakpoint is hit. Variables
currently in scope can be included in a trace statement output by prefixing the
variable name with a $ token for string variables, or an @ token for primitive types
such as int or long. For example:

 Account $pAccount->m_sName has a balance of @pAccount->m_fBalance

(c) Sparx Systems 2015 - 2017 Page 83 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Failure to Bind Breakpoint

A breakpoint failure occurs if there is a problem in binding the breakpoint. Breakpoint failures are most often caused by
source files being changed without the application being rebuilt. Breakpoints can sometimes bind to a different line,
causing them to be moved. If a breakpoint cannot be bound to the binary at this line or the three lines following it, it is
displayed with a question mark.

A warning message displays in the 'Details' column of the Breakpoints & Events window, identifying the type of
problem:

The source file for the breakpoint does not match the source file used to build the application image·
The time date stamp on the file is greater than that of the image·

A warning message is also output to the Debug window.

(c) Sparx Systems 2015 - 2017 Page 84 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Debug a Running Application

Rather than starting a process explicitly from within Enterprise Architect, you might want to debug an application
(process) that is already running on your system.

In this case you can use the debugging capability to attach to the process that is already running. Provided you have the
appropriate debug information written into the running process, and/or associated debug files (such as .PDB files), the
debugger binds to that process and initiates a debug session.

You can also 'detach' from the process after you have completed your inspection and leave the process to run as normal.

Access

Ribbon Execute > Run > Start > Attach to Process or

Execute > Analyze > Debugger > Attach to Process

Other
Debug window toolbar :

Stages

Stage Description

Show Processes When you select to debug another process, the 'Attach To Process' dialog displays.

You can limit the processes displayed using the radio buttons at the top of the
dialog; to find a service such as Apache Tomcat or ASP.NET, select the System
radio button.

Select Debugger When you select a process, you might have to choose the debugger from the
Debugger dropdown list; however, if the selected Package has already been
configured in an Analyzer Script, then the debugger listed in the script is preset on
the dialog.

Process Selection Once you double-click on a process containing debug information, and Enterprise
Architect is attached to the process:

Any breakpoints encountered are detected by the debugger·
The process is halted when a breakpoint is encountered, and·
The information is available in the Debug window·

Detach From Process
To detach from a process, click on the (Debug Stop) button.

(c) Sparx Systems 2015 - 2017 Page 85 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

View the Local Variables

The Locals window displays variables of the executing system. Whether you are recording C#, debugging Java, C++ or
VBScript, debugging an Executable StateMachine, or running a simulation, this window is where the system's variables
are located. Current values are only displayed when a program is halted. This occurs when a breakpoint is encountered
during debugging, when you step over a line of code or when you step between States in a simulation.

Access

Ribbon Execute > Windows > Local Variables

Simulate > Dynamic Simulation > Local Variables

Context Menu In Code Editor | Right-click on any variable identifier > Display Variable

Icons

The value and type of any in-scope variable is displayed in a tree; each variable has a colored box icon that identifies the
type of variable:

Blue - Object with members·
Green - Arrays·
Pink - Elemental types·
Yellow - Parameters·
Red - Workbench instance·

Finding variables

The easiest way to find a variable is to first locate it in the code editor and use the right-click context menu on the
variable, selecting 'Display Variable'. Enterprise Architect will find and reveal any variable in scope, including deeply
nested members. If the variable is found in a different scope (global, file, module, static), it will be displayed in the
Watches window (see View Variables in Other Scopes).

(c) Sparx Systems 2015 - 2017 Page 86 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Persistent View

The examination of variables usually involves digging around in the tree to expose the values of interest. It can be
annoying then, having gone through that trouble, to step to the next line of code, only to have those variables buried from
sight again due to a change in context. The Locals window has a persistent view that lingers for a while after a run or
step command. When you step through a function in Enterprise Architect, the variables structure persists line after line.
This makes stepping through a function quick and easy.

What changed

As part of the persistent view, the Locals window tracks changes to values and highlights them.

Context Menu

(c) Sparx Systems 2015 - 2017 Page 87 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Facility Detail

Break When Variable is
Modified

Set data breakpoints on the selected memory variable to halt debugger execution at
the line of code that has just caused the value of the variable to change.

View Memory at Address Display the raw values in memory at the selected address, in hex and ASCII.

Show in String Viewer Display the variable string in the 'String Viewer' dialog.

Dump Variable Members
to File

Capture and store the selected variables to a separate location; a browser displays to
select the appropriate .txt file name and file path.

Save Snapshot of Variable Capture the value of a variable at a specific point in the life of that variable.

Compare Variable
Snapshots

Compare the values of a variable at different points in the life of that variable.

Copy Copy the selected variable to the Enterprise Architect clipboard.

Add Instance Run State to
Diagram

If you have opened a model diagram containing an Object of the Class for which
the source code is being debugged, this option updates that Object with the Run
State represented by the variable value.

Set Conditional Breakpoint Add a breakpoint at the current execution position with a constraint for this variable
matching its current value.

(c) Sparx Systems 2015 - 2017 Page 88 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

View Content Of Long Strings

For efficiency, the Locals window only shows partial strings. However, you can display the entire contents of a string
variable using the 'String Viewer'.

This example shows the value of a variable holding the contents of an xml schema file.

Access

(c) Sparx Systems 2015 - 2017 Page 89 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

From Code Editor or Locals window:

Right-click on string variable | Show in String Viewer

(c) Sparx Systems 2015 - 2017 Page 90 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

View Debug Variables in Code Editors

When a breakpoint occurs, you will see all the local variables in that window. You can also inspect variables in the
Source Code Editor by hovering your mouse over the reference. Here are some examples.

Note: The variable does not have to be one of the local variables. It can have a file or module scope.

(c) Sparx Systems 2015 - 2017 Page 91 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Variable Snapshots

It is possible to take a 'snapshot' of a variable when your program hits a breakpoint and use this snapshot to see how the
value of the variable changes at different points in its life. The debugger does not copy the value of the selected variable
only; for complex variables it copies the values of the selected variable and of each of its hierarchy of members until it
can no longer find any more debug information for a member or no more members can be found.

Capture Variable Snapshot

Step Action

1 In the Code Editor, set two breakpoints: one at the start of a function and another at the end of the
function.

2 At the start breakpoint, right-click on a variable in the Locals window and select the 'Save Variable
Snapshot' menu option.

3 Run the application.

4 When the end breakpoint is reached, right-click on the variable in the Locals window and select the
'Compare Variable Snapshots' option.

A dialog displays that shows the original value from the first snapshot and the current value from the
second snapshot as illustrated in this diagram taken from the EA.Example model.

Save Variable Snapshot to File

You can save the state of a variable to file using its right-click context menu.

(c) Sparx Systems 2015 - 2017 Page 92 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

This is an excerpt of the file contents.

(c) Sparx Systems 2015 - 2017 Page 93 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Actionpoints

Actionpoints are breakpoints that can perform actions. When a breakpoint is hit, the actionpoint script is invoked by the
debugger, and the process continues to run. Actionpoints are sophisticated debugging tools, and provide expert
developers with an additional command suite. With them, a developer can alter the behavior of a function, capture the
point at which a behavior changes, and modify/detect an object's state. To support these features, Actionpoints can alter
the value of primitive local and member variables, can define their own 'user-defined-variables' and alter program
execution.

User-Defined Variables in Actionpoints and Breakpoints

User Defined Variables (UDVs):

Provide the means for setting a UDV primitive or string in Actionpoint statements·
Can be used in condition statements of multiple markers/breakpoints·
Can be seen easily in the same Local Variables window·
The final values of all UDVs are logged when debugging ends.·

In the UDV syntax, the UDV name:

Must be preceded by a # (hash) character·
Is case-insensitive·

Actionpoint Statements

Actionpoint statements can contain set commands and goto commands.

set command - sets variable values. An Actionpoint statement can contain multiple set commands. They should precede
any goto command.

The set command syntax is:

set LHS = RHS

Where:

LHS = the name of the variable as a:

- user defined variable (UDV) such as #myval

- local or member variable such as strName or this.m_strName

RHS = the value to assign:

- As a literal or local variable

- If a literal, as one of: integer, boolean, floating point, char or string

UDV Examples Local Variable Examples

set #mychar = 'a' set this.m_nCount=0

set #mystr = "a string" set bSuccess=false

set #myint = 10

(c) Sparx Systems 2015 - 2017 Page 94 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

set #myfloat = 0.5

set #mytrue = true

goto command

goto command - switches execution to a different line number in a function. An Actionpoint statement can contain only
one goto command, as the final command in the statement.

The goto command syntax is:

goto L

Where L is a line number in the current function.

Integer operators

Where a UDV exists and is of type int, it can be incremented and decremented using the ++ and -- operators. For
example:

Create a UDV and set its value and type to a local integer variable.1.
 AP1: set #myint = nTotalSoFar

Increment the UDV.2.
 AP2: #myint++

Decrement the UDV.3.
 AP3: #myint--

Timer operations

Actionpoints can report elapsed time between two points. There is only one timer available, which is reset or started with
the startTimer command. The current elapsed time can then be printed with the printTimer command. Finally, the total
elapsed time is printed and the timer ended with the endTimer command.

Example Actionpoint Conditions

With Literals and constants:

(#mychar='a')

(#mystr <> "")

(#myint > 10)

(#myfloat > 0.0)

With Local Variables:

(#myval == this.m_strValue)

(c) Sparx Systems 2015 - 2017 Page 95 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

(#myint <> this->m_nCount)

(#myint != this->m_nCount)

Instruction Recording

Instruction recording can be useful for detecting changes to a known behavior; the point in execution (B) that diverges
from a previous execution(s) (A). The commands are:

recStart - starts recording or starts comparing if a previous recording exists·
recStop - ends recording·
recPause - pause recording·
recResume - resumes recording·

The recStart command begins recording instructions. Executed instructions are then stored. When a recStop command
is encountered, the recording is saved. There can only be one saved recording at any one time between two Actionpoints.
When a recStart is encountered and a previous recording exists, the debugger will begin comparing each subsequent
instruction with its recording. It could perform many comparisons. If and when a difference is detected, the debugger
will break and the line of code where the behavior changed will be displayed in the code editor. The iteration of the
comparison is also printed.

The recording is stored in memory by default, but it can also be stored to a file with the command syntax:

 recStart filesspec

For example:

 recStart c:\mylogs\onclickbutton.dat

When a recStart command is encountered that specifies a file, and that file exists, it is loaded into memory and the
debugger will immediately enter comparison mode.

Expressions

There is no implicit precedence in Breakpoint, Actionpoint and Testpoint conditional expressions. In complex
expressions, the use of parentheses is mandatory. See these examples:

Actionpoint UDV example

(#myint=1) AND (#mystr="Germany")

Local variables example

(this.m_nCount > 10) OR (nCount%1)

(this.m_nCount > 10) OR (bForce)

Equality operators in conditional expressions

<> Not Equal

!= Not Equal

== Equal

(c) Sparx Systems 2015 - 2017 Page 96 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

= Equal

Assignment operator in Actionpoint

= Assigns RHS to LHS

Arithmetic operators in conditional expressions

/ division

+ plus

- minus

* multiplication

% modulus

Logical operators in conditional expressions

AND - both must be true

OR - one must be true

&& - both must be true

|| - one must be true

^ - Exclusive OR (only one must be true)

(c) Sparx Systems 2015 - 2017 Page 97 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

View Variables in Other Scopes

Access

Ribbon Execute > Windows > Watches

Other
Execution Analyzer window toolbar : | Watches

Views

View Description

Watches The Watches window is most useful for native code (C, C++, VB) where it can be
used to evaluate data items that are not available as Local Variables - data items
with module or file scope and static Class member items.

You can also use the window to evaluate static Class member items in Java and
.NET

To add a watch, type the name of the variable to watch in the toolbar, and press the
Enter key.

To examine a static Class member variable in C++, Java or Microsoft .NET, enter
its fully qualified name:

 CMyClass::MyStaticVar

To examine a C++ data symbol with module or file scope, just enter its name.

Variables are evaluated by looking at the current scope; that is, the module of the
current stack frame (you can change the scope at a breakpoint by double-clicking
the frame in the Call Stack).

If the global variable exists in a different module, you can examine the variable by
prefixing the module name to the variable

 modulename!variable_name

History The history of items entered is maintained. Previously entered names or expressions
can be selected again using the Up and Down arrow keys inside the toolbar text
box. The history will also persist for the user across any instance of Enterprise
Architect or model on the same machine.

(c) Sparx Systems 2015 - 2017 Page 98 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

View Elements of Array

You can use the Watches window to inspect one or more specific elements of an array.

In the field to the left of the Watches window toolbar, type the variable name of the array followed by the start element
and the number of elements to display. The start element is enclosed in square brackets and the count of elements is
enclosed in parentheses; that is:

 variable[start_element](count_of_elements)

For example, Points[3](2) displays the fourth and fifth elements of the Points array, as illustrated.

If you entered Points[3] the Watches window would show the third array element only.

Access

Ribbon Execute > Windows > Watches

Other
Execution Analyzer window toolbar : | Watches

(c) Sparx Systems 2015 - 2017 Page 99 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

View the Call Stack

The Call Stack window is used to display all currently running threads in a process. It can be used to identify which
thread is operational, immediately before program failure occurs.

When a Simulation is active, the Call Stack will show the current execution context for the running simulation. This will
include a separate context stack for each concurrent simulation "thread".

A stack trace is displayed whenever a thread is suspended, through one of the step actions or through encountering a
breakpoint. The Call Stack window can record a history of stack changes, and enables you to generate Sequence
diagrams from this history.

Access

Ribbon Execute > Windows > Call Stack

Other
Execution Analyzer window toolbar : | Call Stack

Use to

View stack history to understand the execution of a process·
View threads·
Save a call stack for later use·
Record call stack changes for Sequence diagram generation·
Generate a Sequence diagram from the call stack·
View the related code line in the Source Code Editor·

Facilities

Facility Description

Indicators A pink arrow highlights the current stack frame·
A blue arrow indicates a thread that is running·
A red arrow indicates a thread for which a stack trace history is being recorded·

Save a Call Stack to a
.TXT File

Not currently available.

Record a Thread in a
Debug Session

To record the execution of a thread and direct the recording to the Record &
Analyze window, right-click on the thread in the Call Stack and select the
appropriate context menu option:

'Record' - to manually record the current thread during the debug session·
Used in conjunction with the 'step' buttons of the debugger; each function that
is called due to a step command is logged to the Record & Analyze window

(c) Sparx Systems 2015 - 2017 Page 100 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

'Auto-Record' - to perform auto-recording during a debug session·
When you select this icon, the Analyzer begins recording and does not stop
until either the program ends, you stop the debugger or you click on the 'Stop'
icon

Stop Recording If you have started a manual or automatic recording of a thread you can stop it
before completion; select the thread (indicated by a red arrow) and either:

Click on the (Stop Recording) button in the toolbar or·
Right-click and select the 'Stop' option·

Generate a Sequence
Diagram from the Call
Stack

To generate Sequence diagram from the Call Stack trace, either:

Click on the (Generate Sequence Diagram of Stack) button, or·
Right-click and select the 'Generate Sequence Diagram' option·

Copy Stack to Recording
History

To add the stack details immediately to the Record & Analyze window (for later
generation of Sequence diagrams) either:

Click on the button, or·
Right-click and select the 'Copy Stack to Record History' option·

Toggle Stack Depth To toggle between showing the full stack and showing only frames with source,

click on the (Toggle Stack Depth) button.

Display Related Code in
Source Code Editor

Double-click on a thread/frame to display the related line of code in the Source
Code Editor; local variables are also refreshed for the selected frame.

(c) Sparx Systems 2015 - 2017 Page 101 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Create Sequence Diagram of Call Stack

The Call Stack window records a history of stack changes from which you can generate Sequence diagrams.

Access

Ribbon Execute > Windows > Call Stack

Other
Execution Analyzer window toolbar : | Call Stack

Use to

Record Call Stack changes for Sequence Diagram generation·
Generate a Sequence Diagram from the Call Stack·

To generate a Sequence diagram from the current Stack, click on the (Generate Sequence Diagram of Stack) button
on the Call Stack window toolbar.

This immediately generates a Sequence diagram in the Diagram View.

(c) Sparx Systems 2015 - 2017 Page 102 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

(c) Sparx Systems 2015 - 2017 Page 103 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Inspect Process Memory

Using the Memory Viewer, you can display the raw values of memory in hex and ASCII. You can manually define the
memory address in the 'Address' field (top right), or right-click on a variable in the Locals window or Watches window
and select the 'View Memory at Address' option.

Access

Ribbon Execute > Windows > Memory Viewer

Other
Execution Analyzer window toolbar : | Memory Viewer

From Locals window or Watches window : Right-click on a variable | View
Memory at Address

Notes

The Memory Viewer is available for debugging Microsoft Native Code Applications (C, C++, VB) running on·
Windows or within WINE on Linux

(c) Sparx Systems 2015 - 2017 Page 104 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Show Loaded Modules

For .NET and native Windows applications, you can list the DLL's loaded by the debugged process, using the Modules
window. This list can also include associated symbolic files (PDB files) used by the debugger.

Access

Ribbon Execute > Windows > Modules

Modules Window display

Column Description

Path Shows the file path of the loaded module.

Load Address Shows the base memory address of the loaded module.

Modified Date Shows the local file date and the time the module was modified.

Debug Symbols Shows:

The debug symbols type·
Whether debug information is present in the module, and·
Whether line information is present for the module (required for debugging)·

Symbol File Match Indicates the validity of the symbol file; if the value is false, the symbol file is out
of date.

Symbol Path Shows the file path of the symbol file, which must be present for debugging to
work.

Modified Date Shows the local file date and time the symbol file was created.

(c) Sparx Systems 2015 - 2017 Page 105 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Process First Chance Exceptions

Access

Ribbon Execute > Analyze > Debugger > Process First Chance Exceptions

Other
Debug window toolbar : | Process First Chance Exceptions

Processing Elements

Element Description

Debug Process When an application is being debugged and the debugger is notified of an
exception, the application is paused and the debugger responds in the way it is
configured to do; it either:

Resumes the application and leaves the exception to the application to manage,·
or

Keeps the application suspended and passes the exception to the appropriate·
routines for automatic resolution or manual intervention

Second Chance Exceptions The Enterprise Architect debugger defaults to the first behavior, above.

If the application can handle the exception, it continues to process; if it cannot
handle the exception, the debugger is notified again and this time it must suspend
the application and resolve the exception condition.

In this behavior, because the debugger has encountered the exception twice, it is
known as a second-chance exception; in this case, if the exception does not halt
execution, it is ignored and you avoid spending time on conditions that do not
impact the overall outcome of processing.

You might work this way on large or complex systems that invariably involve
exception conditions somewhere in the processing paths.

First Chance Exceptions However, if you want to examine every exception that occurs as soon as it occurs,
you can set the debugger to adopt the second behavior.

Because the debugger responds to the exception on first contact, it is known as a
first-chance exception.

You might work this way with individual functions or routines that must work
cleanly or not at all.

Selection Select the 'Process First Chance Exceptions' option to debug exceptions on first
contact.

Deselect the option to process exceptions only if the application fails when they
occur.

(c) Sparx Systems 2015 - 2017 Page 106 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

Just-in-time Debuger

You can register the Enterprise Architect debugger as the operating system Just-in-time debugger, to be invoked when an
application running outside Enterprise Architect on the system either encounters an exception or crashes. When you do
so, an application crash will cause Enterprise Architect to be opened, and the source and reason for the crash displayed.

Access

Ribbon Execute > Analyze > Debugger > Set as JIT Debugger

(c) Sparx Systems 2015 - 2017 Page 107 of 108 Created with Enterprise Architect

User Guide - Build & Debug 30 June, 2017

(c) Sparx Systems 2015 - 2017 Page 108 of 108 Created with Enterprise Architect

	Build & Debug
	Analyzer Scripts
	Managing Analyzer Scripts
	Analyzer Script Editor
	Build Scripts
	Cleanup Script
	Debug Script
	Operating System Specific Requirements
	UAC-Enabled Operating Systems
	WINE Debugging

	Java
	General Setup for Java
	Advanced Techniques
	Attach to Virtual Machine
	Internet Browser Java Applets

	Working with Java Web Servers
	JBOSS Server
	Apache Tomcat Server
	Apache Tomcat Windows Service

	.NET
	General Setup for .NET
	Debugging an Unmanaged Application
	Debug COM Interop
	Debug ASP .NET

	The PHP Debugger
	PHP Debugger - System Requirements
	PHP Debugger Checklist

	The GNU Debugger (GDB)
	The Android Debugger
	Java JDWP Debugger
	Tracepoint Output
	Workbench Setup
	Microsoft C++ and Native (C, VB)
	General Setup
	Debug Symbols

	Test Scripts
	Run Script
	Deploy Script
	Testpoints Output
	Recording Scripts

	Build Application
	Locate Compiler Errors in Code

	Debugging
	Run the Debugger
	Breakpoint and Marker Management
	Setting Code Breakpoints
	Trace Statements
	Break When a Variable Changes Value
	Trace When Variable Changes Value
	Detecting Memory Address Operations
	Breakpoint Properties
	Failure to Bind Breakpoint

	Debug a Running Application
	View the Local Variables
	View Content Of Long Strings
	View Debug Variables in Code Editors
	Variable Snapshots

	Actionpoints
	View Variables in Other Scopes
	View Elements of Array

	View the Call Stack
	Create Sequence Diagram of Call Stack

	Inspect Process Memory
	Show Loaded Modules
	Process First Chance Exceptions
	Just-in-time Debuger

